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Abstract: This paper proposes an algorithm for the computation of exact probability distribution of the modified 

Wilcoxon signed-rank test. The implementation of the exact permutation algorithm will help in carrying out complete 

enumeration of all possible distinct rearrangements that is required without just sampling without replacement from the 

permutation sample space. The method is however suitable when samples are paired and can be adopted for all such 

situations requiring complete enumeration of all distinct permutations thus producing exact p-values which ensures that 

the probability of a type I error is exactly α. An extensive simulation study was carried out to compare the exact 

permutation and the asymptotic normal approximation of two competing permutation tests in terms of their type I error 

and statistical power. The algorithm is capable of breaking down completely all the problem associated with the 

permutation to ensure easy implementation and the required analysis. The algorithm was implemented in Intel Visual 

Fortran to compare the performances of two diagnostic test procedures on gestational diabetic mellitus. 

Keywords: Wilcoxon signed-rank test, diagnostic test. 

 

1. INTRODUCTION 

Permutation tests (randomization test), are 

nonparametric statistics often used for statistical 

inferences about AUC. They are often associated with 

the early works of Fisher (1935) and are specific to 

hypothesis testing. A permutation test constructs a 

permutation sample space, which consists of equally 

likely permutation sample points created by 

interchanging the test results of the sample which are 

assumed to be “exchangeable” under the null 

hypothesis. Therefore, the permutation sample space is 

the exact probability space of the possible arrangements 

of the sample data under the null hypothesis given the 

original sample. For instance, when comparing two 

diagnostic tests having paired data, permutation tests 

here consists of exchanging the paired test results. With 

permutation tests, we randomly redistribute the overall 

test results into two groups of N nondiseased and M 

diseased subjects’ labels, and calculate a test statistic of 

interest. The type of sampling involved in this 

reshuffling of the labels of subjects is called sampling 

without replacement. When this reshuffling or exchange 

happens say 1000 or 10,000 times, we generate a 

distribution of test results for the test statistic of interest 

under the null hypothesis of equality of no difference 

between the two sampled results from two populations 

of interest. Permutation tests provide exact distribution 

results when complete enumeration is possible. 

Permutation tests are generally confronted with the 

problems of high demand for space and time 

complexity during computation. 

 

Good (2000) Summarized Five Steps for A 

Permutation Test As Follows: 

1. Analyze the given problem. 

2. Make choose of a test statistic and establish a 

rejection rule for distinguishing the null hypothesis 

from the alternative hypothesis. 

3. Compute the test statistic for the original 

observations. 

4. Rearrange the observations, compute the test 

statistic for every new arrangement and repeat this 

process until all permutations are obtained. 

5. Construct the exact distribution for the test statistic 

based on Step 4. Step 4 is where the difficulty in 

permutation test lies because a complete 
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enumeration of all distinct permutations of the 

experiment is required. 

 

Good (2000) identified the sufficient condition 

for a permutation test to be exact and unbiased against 

shifts in the direction of higher values as the 

exchangeability of the paired sample test results or 

observed units.   

 

In carrying out permutation tests involving 

diagnostic tests, Venkatraman & Begg (1996) proposed 

a method for detecting any differences at every 

operating point between two ROC curves. Similarly, 

Bandos et al., (2005) proposed a method that is 

sensitive to the difference in AUCs in diagnostic 

performance. These tests assume the same condition of 

exchangeability of the diagnostic test results under the 

null hypothesis, but differ in the sense that the 

permutation test by Bandos et al., has an easy-to-

implement and precise approximation and better detects 

different ROC curves if they differ with respect to the 

AUC while Venkatraman and Begg (1996) aimed to 

increase the power to detect a crossing alternative. 

Specifically, Bandos et al., (2005) based their 

permutation test on the difference in areas and derived 

exact and asymptotic permutation test methods to test 

the equality of two correlated ROC curves which are 

designed to have increased power to detect difference in 

the AUC. The test of Bandos et al., (2005) directly tests 

for an equality of AUCs. This approach implicitly 

assumes that both diagnostic test procedures are 

exchangeable within subject and requires an appropriate 

transformation, such as ranks, for diagnostic test 

procedures differing in scale. Bandos et al., (2005) 

compared the performance of their test to that of 

DeLong et al., (1988) through simulation and found that 

the permutation test had greater power than the 

nonparametric test developed by DeLong et al., (1988) 

when there was moderate correlation between 

diagnostic tests, large AUCs, and small sample sizes. 

Bandos et al., (2005) test is limited by the fact that it 

requires the exchangeability of the diagnostic test 

procedures and do requires also the transformations of 

the original data if test results are measured on different 

scales. Therefore it requires diagnostic tests that are 

measured on identical scales. Therefore it is less 

powerful in settings in which the diagnostic test results 

are skewed since it requires diagnostic tests that are 

measured on identical scales (Braun and Alonzo, 2008). 

 

Given the fact that clinical trials requires exact 

results and the purpose of matching in clinical trials is 

to increase the precision of the comparisons among the 

samples thus reducing variability among them, a 

suitable statistic for matched sample is inevitable.  

According to Harris and Hardin (2013), Wilcoxon 

signed rank test (WSRT) is a nonparametric test often 

used in clinical trials, in which it is common to have 

small samples and inferences about exact statistics are 

made. This is because large-sample results are not 

acceptable in many clinical trials studies. WSRT is the 

nonparametric counterpart to the two sample paired t 

test for paired samples. The test is based on the signed 

ranks of a random sample from a population which is 

continuous and symmetric around the median. This 

statistic uses the ranks of the absolute differences 

between the paired samples along with the sign of the 

difference. It uses the relative magnitudes of the data. 

This statistic can also be used to test for symmetry and 

to test for equality of location for paired samples. 

 

2.  PROPOSED METHOD 

We wish to compare namely 

1 2AUC and AUC which are respectively the AUCs 

of two diagnostic test procedures having a total number 

of n subjects. The procedure is such that a total number 

of N
 
nondiseased subjects and M diseased subjects each 

received both diagnostic tests. Let the test results of 

diagnostic tests 1 and 2 for the nondiseased subject be 

1 2i iX and X where 1,...,N.i  Also let the test 

results of diagnostic tests 1 and 2 for the diseased 

subject be 1 2j jY and Y where 1,...,M.j  Also let 

      11 12 21 22 1 2,X , ,X ,..., ,XN NX X X X

denotes pairs of vector of measurement on nondiseased 

subjects and let 

      11 12 21 22 1 2,Y , ,Y ,..., ,YM MY Y Y Y be the 

pairs of vector of measurement on diseased subjects. 

Note that ˆ ˆAUC and W are used interchangeably. 

Therefore the difference in AUCs given as 

2 1AUC AUC AUC   is estimated 

nonparametrically as: 

 

     2 2 1 1

1 1 1 1 1 1

1 1 1
, ,Y ,Y 1

N M N M N M

im jm i j i j

i j i j i j

AUC Q X X Q X Q X
NM NM NM



     

 
   

 
  

   

 

     

       

2 1

2 1 2 2 2 2 1 1 1 1

1
,Y ; 1,2.

2

1 1
[ ] [ ] .

2 2

im jm ij ij ijm ijm im jm im jm

ij ij i j i j i j i j

where Q X S S S and S A X Y A X Y m

S S A X Y A X Y A X Y A X Y

       

 
         

   

 

 



 

Okeh UM & Onyeagu Sidney I; East African Scholars J Eng Comput Sci; Vol-2, Iss-11 (Dec, 2019): 330-344 

© East African Scholars Publisher, Kenya   332 

 

Consider according to Hanley and McNeil (1982),that this indicator function is    

 
1

0.5 2

0

m 1,2.

im jm

ijm im jm

im jm

if X Y

S if X Y

if X Y

 


 
 



 

 

In other to test the null hypothesis 
0 2 1: 0,H AUC AUC  we combine M and N  subjects to have n 

subjects and let  1 11 12 1 1,N 1 1,N 2 1,S ,...,S ,S ,S ....,SN nS S   be n measurements arising from diagnostic test 1 while the 

subscripts 1,2,..,Np  shows test results for the nondiseased subjects while 1,N 2,....,nq N   shows test results 

for the diseased subjects. Based on this arrangement within diagnostic test 1, we compare every subject’s test result to 

every other subject’s test result. Thus, 

 

   1 1 1 1 1

1
; 3

2
pq p q p qR A S S A S S iff p q    

 
 

This implies that every diseased subject is compared to all nondiseased subjects and all  1M  other diseased 

subjects. Similarly, every nondiseased subject is compared to all diseased subjects and all  1N  other nondiseased 

subjects. Also let   2 21 22 2 2,N 1 2,N 2 2,S ,...,S ,S ,S ,...,N nS S S  be n measurements arising from diagnostic test 2 

while the subscripts 1,2,...,Np  shows test results for the nondiseased subjects while 1,N 2,...,nq N   shows 

test results for the diseased subjects. Similarly within diagnostic test, 2, we compare every subjects test result to every 

other subjects test result, that is,  

 

   2 2 2 2 2

1
; . 4

2
pq p q p qR A S S A S S iff p q    

 
 

Given the above definitions, therefore 1 ;m 1,2.pq pqmR R  
 

 

To test the null hypothesis that AUC 0  , which is similar to testing the null hypothesis that the difference 

between paired samples is a distribution that is symmetric around zero, we adopt the transformation in (equation 2) 

whose indicator function is [1,0.5,0] and adjust for the presence of ties (zero difference) by mapping from the diagnostic 

pairs and disease status[0,1] to [1,0,-1].Given the specifications above, we generalize the estimate of AUC  as  

 

1 1 1 1

1 1ˆ 5
N M N M

pq pq pq

p q p q

W iT T r Q
NM NM   

  
 

 

Where   

1, ( ) ( )

1, ( ) ( )

0, ( )

pq

if p and q test result of subject is nondiseased and diseased respectively

T if p and q test result of subject is diseased and nondiseased respectively

if p and q test result of subject are both diseased or both non

 

   



     2 1

( )

. .pq pq pq pq

diseased

and r Q R R Note that i rank of Q




 

  

 

 

Note that pqQ is the difference between the 

sample pairs of 1S being measurements arising from 

diagnostic test 1 and 2S being measurements arising 

from diagnostic test 2. This is based on the 

exchangeability of the diseased and nondiseased labels 

of the subjects within each diagnostic test. The indicator 

function pqT  takes value 1 at the calibrated cut-off 

point c of a given diagnostic test if subject test result p 

is nondiseased and subject test result q is diseased. It 

takes -1 if subject test result p is diseased and subject 

test result q is nondiseased. Values of 0 represents cut-

offs at which both subject test results p and q are 

diseased or nondiseased.  Recall that the AUC is 

equivalent to two-sample Wilcoxon test statistic (Pardo 

and Franco-Pereira, 2017),and can be used to carry out 

test of symmetry around zero for paired samples. Based 

on that finding, the equation 5 above which is the 

modified Wilcoxon Signed rank test statistic is 
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equivalent to difference in AUCs and can be used as a 

test statistic for the test of symmetry around zero.  This 

proposed test statistic is more powerful than the 

modified sign test statistic(Oyeka,2009)proposed by 

Braun and Alonzo (2008) for comparing correlated 

ROC curves as it utilizes both the signs, pqT  and the 

absolute ranks of pqQ
. 

When both diagnostic tests 

results are measured continuously, testing the 

hypothesis that 0AUC   is equal to testing the null 

hypothesis that  pqr Q is a symmetric distribution 

around zero. We therefore test the null hypothesis that 

0AUC   by computing AUC
 for every 

permutation of ,pqT  the signs of the rank of .pqQ  

Given that our permutation of pqT requires exchanging 

the labels of nondiseased subject’s test results p  and 

diseased subject’s test result q , it is the same as 

permuting among the subjects, the vector of test results 

of diseased/nondiseased labels. Therefore, the link 

between the true diseased status of a given subject as 

well as its test results arising diagnostic tests 1 and 2 are 

dislodged under this type of permutation arrangement. 

This permutation test is therefore valid if either one of 

the AUC of the diagnostic tests is equal to t, where t is a 

number in between 0.5 and 1 inclusive.  

 

3. EXACT PERMUTATION TEST  
To ensure that the probability of a type I 

error is exactly α, thus obtaining exact p-values, an 

algorithm for obtaining exact permutation 

distribution of the test statistic, ˆ ,AUC is 

presented by implementing it in Intel Visual 

FORTRAN. This software package is to be used 

because it can carry out sampling without 

replacement, which increases the power of the 

permutation test. For a complete enumeration of all 

the paired permutations of the two diagnostic test 

results, the required number of permutations is 

given by  

1

2 .
n

n

s

n
where n M N

s

 
   

 


 

Therefore a paired sample design with n pairs has 2N M
 possible permutations of the variates with each 

permutation occurring with probability 2 .N M 

 
 

Let    1 11 12 1 1,N 1 1,N 2 1 2 21 22 2 2,N 1 2,N 2 2,S ,...,S ,S ,S ....,S ,S ,...,S ,S ,S ,...,N n N nS S and S S S     be n 

measurements arising from two diagnostic tests 1 and 2 respectively where the subscripts 1,2,...,Np   represents test 

results for the nondiseased subjects and 1,N 2,...,nq N   representing test results for the diseased subjects, we 

consider AUC
 given in (equation 5)as the test statistic and test the null hypothesis 

0 1 2 1 1 2: : .H AUC AUC versus H AUC AUC 
 

 

Suppose the test statistic AUC
and it is required that difference in AUCs should be computed for all pairs 

arising from diagnostic test 1 and 2, we therefore for simplicity replace our test statistic AUC
with W. Let 

 1 2 3, , ,...., mW W W W W be m distinct values of the test statistic W. The probability distribution of the test statistic W 

under the null hypothesis is given by 

 

     0 0

1

2 2 , 6
lf

N M N M

l l

k

P W w H f   



  
 

 

Where lf  is the frequency of occurrences of .lW  Given a particular value of n and significant level , c being 

the critical value is in correspondence to the closest of α. The distinct occurrences of W  are therefore all ordered in an 

increasing order of size. If the point occupied by the observed value of W  is h, then the left and right side of the 

probability distribution of W has level of significance given as 

 

   0

1 1 1

2 2 7
lfh h

N M N M

h l

l k l

P W c H f    

  

    
 

  And 
 

   0 2 . 8
m

N M

h l

l h

P W c H f  



   
 



 

Okeh UM & Onyeagu Sidney I; East African Scholars J Eng Comput Sci; Vol-2, Iss-11 (Dec, 2019): 330-344 

© East African Scholars Publisher, Kenya   334 

 

 

Since the alternative hypothesis suggests a two sided test, the left and right side are added up. Therefore, for a 

symmetric distribution of W  around zero 

 

1 1

. 9
h m

l l

l l m h

f f
   

 
 

 

Since permuted subjects labels are represented by 1 2S and S from diagnostic test 1 and 2 respectively, let 

 1 2, ,..., n    be a set of all distinct permutations resulting from 1 2S and S pairs from diagnostic test 1 and 2 such 

that s  is the 
ths permutation.  

 

The Steps Involved In The Permutation Test Are Defined As Follows: 

1. Calculate the Test Statistic,
1W  for the original observations 1  

2. Obtain a distinct permutation 
s  

3. Calculate the Test Statistic for the distinct permutation, s  that is  sW    

4. Go back to Steps 2 and 3 and repeat for 2,3,..., 2ns   , n N M sample size    

5. Now build the empirical cumulative probability distribution as 

 

   
2

0 1

1

1

1

1

1
ˆ 10

2

1

0

1

n

s sn
s

s

s

s

p p W W T W W

if W W

where T if W W

if W W



   




 
 



 

 

6. Given the empirical cumulative probability distribution p̂ , if 0 ,p  we reject 0H . 

 

These steps compute the empirical cumulative probability distribution of W under the null hypothesis. 

 

An Algorithm for Calculating the Exact Distribution 

Of ˆ .W  

The test statistic Ŵ  is computed for each 

permutation in the complete enumeration of the distinct 

permutations. The distribution of the test statistic is 

obtained by tabulating the distinct values of the statistic 

against their probabilities of occurrence in the complete 

enumeration, bearing in mind that all the permutations 

are equally likely. The paired permutation is 

constructed by letting smS  represent the paired test 

results of subjects in the two diagnostic tests 1 and 2, 

where 60; 1,2.s m   See appendix A1 for the 

algorithm. 

 

4. Operating Characteristics 

We have performed data simulations to 

investigate and compare test size (type I error) and 

statistical power of the proposed test and test of Braun 

and Alonzo (2008). Nondiseased and diseased test 

results of subjects from two diagnostic tests are 

modeled using binormal distribution as it provides 

flexibility and simulated. To achieve this, we  apply 

binormal ROC model for simplicity and robustness 

(Hanley,1988).So, within the 
thm  diagnostic test, 

subjects test results are obtained from binormal 

distribution of nondiseased subjects  as 

 . . , ,i i dm m m

i X XX N    and diseased subjects as 

 . . , .i i dm m m

j Y YY N    Since sample of subjects for 

two diagnostic tests are paired, a correlation is 

introduced in the measurement of test results as 

 1 2 1 2( , ) ( , ) .Cov X X Cov Y Y    Note that under the 

binormal model, the accuracy between two diagnostic 

tests can be evaluated by comparing two ROC curves 

with the capacity to detecting a difference in AUCs. 

The hypotheses of interest is 

0 1 2 1 1 2: : .H AUC AUC versus H AUC AUC 
 

 

The binormal ROC curve for the distribution 

of subjects test results within the 
thm diagnostic test can 

be parameterized without actually transforming the data 

as 
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 
m

m m X
m m m

Y

AUC P X Y and b



  

  

 

In other to model different patterns of 

correlation (ρ) between the paired test results of 

subjects and difference of AUCs as well as shapes of 

the ROC curve (b), we interchange the parameters of 

the distributions of the test results. For instance, to 

model non-crossing of ROC curves, we set b=1 for the 

two diagnostic tests. In the same way, we set b<1 in 

other to simulate for crossing ROC curves. This 

indicates greater changes among the test results of 

diseased subjects for one of the diagnostic tests. Several 

values of nondiseased (M) and diseased (N) subjects as 

well as the probability of diseased subjects are 

considered also. Test results from two diagnostic test 

procedures were simulated for the purpose of 

comparing the test sizes and statistical power of the 

proposed permutation test for various underlying AUC 

differences, different sample sizes and correlations 

between two diagnostic test procedures as follows. In 

other to generate data, we assumed and drew two 

continuous measurements for each nondiseased subject 

from a bivariate normal distribution centered at 

0,X   with both measurements having a marginal 

variance of 1.0. So that for mth diagnostic test, we have 

20 1.0; 1,2.m mx x
and m   

Therefore 
 1

2
, 1,2

1

m

m

y

m

y

AUC m




  


 

 

Where  
1  is the percentile of standard 

normal distribution (Weiand et al., 1989). Since two 

ROC curves taken from measurements with same 

variances cannot cross each other, we drew two 

continuous measurements for each diseased subject 

from a bivariate normal distribution centered at ,Y  

with both measurements having a marginal variance of 

1.0 for diagnostic tests procedures having noncrossing 

ROC curves. The values in 
Y  are directly determined 

from 
1 2AUC and AUC  particularly from the Hanley and 

McNeil (1982) equation of AUC. We assume unequal 

variances such as 
1 2

2 21.0 3.0
y y

and    for diagnostic 

tests procedures with crossing ROC curves. We 

assumed equal correlation across the test procedures for 

the test results of nondiseased and diseased subject 

measured on continuous scale thus, assuming the 

correlation for all the scenarios to be 

0.25,0.5 0.75.and  A total of 10,000 

replications are computed for a given case while the 

sample sizes of 20,40,60 and 80 are considered and 

used in obtaining both the type I error (test size) and 

statistical power are obtained for sample sizes 20, 40,60 

and 80. A nominal significance level of 5% was used in 

determining the rejection region for the tests. The exact 

values are compared with the approximate 95% 

confidence interval around a nominal size of 0.05 is 

(0.036, 0.064) on the basis of 10,000 simulation in each 

case.  

 

Given the values of AUCs and variances, for 

both non-crossing and crossing ROC curves, the mean 

values of diagnostic test results denoted as 

X Yand   for nondiseased and diseased  subjects 

respectively are obtained from the Hanley and 

McNeil(1982)  equation of AUC while the variance-

covariance matrix is constructed as 

 

1 1

2 2

0 01

0 01

 

 

    
     

    


 
 

5. Simulation Results 

The main essence of data simulation is to 

evaluate the ability to control Test size (Type I error) 

and to achieve higher statistical power for the proposed 

permutation test as compared to other tests. We wish to 

know the test size (type I error) and statistical power of 

the asymptotic normal approximation and exact values 

of various AUCs that are involved as well as how 

correlated subjects’ test results are across diagnostic 

tests at different sample sizes. Here equal correlations 

are assumed for nondiseased and diseased subjects 

across the two diagnostic test results for non-crossing 

and crossing of ROC curves. We compared the test size 

and power of the permutation test to the test by Braun 

and Alonzo(2008) in terms of their exact permutation 

and normal approximation. In comparing the test size 

and statistical power of the proposed test in relation to 

Braun and Alonzo(2008) method, a number of tables 

were obtained as well as four scenarios showing the 

ROC curves with varying AUCs. These are presented 

below.

  

 

 

 

 

 

 

 



 

Okeh UM & Onyeagu Sidney I; East African Scholars J Eng Comput Sci; Vol-2, Iss-11 (Dec, 2019): 330-344 

© East African Scholars Publisher, Kenya   336 

 

Table 1.  Comparison of Test size for the proposed test and that of Braun and Alonzo in terms of exact and 

asymptotic methods with different area and non-crossing ROC curves. 

1AUC  2AUC  0.25   0.50   0.75   

  MWSRT B & A MWSRT B & A MWSRT B & A 

  EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY 

0.6 0.7 .046 .045 .043 .036 .047 .043 .046 .044 .049 .044 .038 .035 

0.6 0.8 .050 .047 .047 .043 .054 .050 .052 .050 .056 .050 .054 .050 

0.7 0.8 .065 .063 .064 .060 .075 .068 .072 .071 .085 .079 .079 .074 

0.7 0.9 .092 .088 .091 .087 .113 .107 .111 .110 .142 .132 .140 .135 

0.8 0.9 .127 .122 .123 .120 .168 .160 .165 .164 .221 .204 .220 .220 

              

0.6 0.7 .039 .036 .039 .034 .043 .038 .042 .038 .042 .038 .041 .040 

0.6 0.8 .046 .045 .043 .049 .049 .045 .045 .043 .050 .045 .046 .045 

0.7 0.8 .062 .059 .060 .057 .069 .064 .063 .060 .081 .073 .078 .077 

0.7 0.9 .086 .083 .085 .082 .110 .102 .107 .105 .136 .124 .136 .129 

0.8 0.9 .126 .120 .125 .122 .171 .159 .170 .170 .223 .201 .222 .220 

              

0.6 0.7 .032 .030 .030 .026 .034 .038 .032 .032 .032 .030 .030 .026 

0.6 0.8 .036 .034 .028 .023 .040 .042 .036 .034 .044 .042 .042 .041 

0.7 0.8 .053 .050 .051 .047 .064 .072 .060 .060 .075 .072 .074 .073 

0.7 0.9 .080 .075 .078 .073 .104 .122 .102 .100 .137 .132 .132 .130 

0.8 0.9 .122 .115 .120 .118 .174 .179 .171 .172 .231 .228 .227 .217 

              

0.6 0.7 .022 .020 .021 .020 .026 .031 .022 .020 .023 .021 .022 .022 

0.6 0.8 .026 .023 .021 .018 .032 .040 .032 .031 .032 .029 .031 .031 

0.7 0.8 .039 .035 .036 .034 .034 .037 .034 .032 .070 .057 .065 .063 

0.7 0.9 .029 .023 .025 .022 .026 .024 .025 .022 .042 .039 .041 .040 

0.8 0.9 .022 .019 .022 .017 .020 .017 .018 .015 .022 .020 .021 .018 

Sample sizes of 10 for both nondiseased and diseased subjects were simulated. 

 

 
 

Table 2.  Comparison of Test size for the proposed test and that of Braun and Alonzo in terms of exact and 

asymptotic methods with different area and crossing ROC curves. 

1AUC  2AUC  0.25   0.50   0.75   

  MWSRT B & A MWSRT B & A MWSRT B & A 

  EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY EXACT ASY 

0.6 0.7 .050 .047 .048 .037 .053 .048 .048 .046 .052 .048 .050 .045 

0.6 0.8 .054 .050 .050 .047 .058 .054 .055 .054 .061 .059 .057 .053 

0.7 0.8 .068 .066 .064 .060 .080 .076 .076 .074 .090 .087 .086 .083 

0.7 0.9 .097 .093 .093 .080 .120 .119 .116 .116 .142 .139 .141 .140 

0.8 0.9 .132 .128 .131 .130 .174 .173 .173 .168 .218 .208 .215 .214 

              

0.6 0.7 .042 .040 .040 .037 .045 .038 .042 .040 .045 .041 .044 .043 

0.6 0.8 .046 .044 .044 .040 .050 .048 .045 .044 .053 .046 .053 .052 

0.7 0.8 .065 .063 .065 .063 .075 .066 .072 .072 .083 .082 .080 .076 

0.7 0.9 .094 .088 .093 .087 .115 .109 .115 .110 .141 .138 .138 .134 

0.8 0.9 .136 .127 .134 .132 .178 .173 .176 .174 .224 .218 .222 .220 

              

0.6 0.7 .036 .032 .034 .030 .037 .035 .033 .032 .040 .037 .038 .036 

0.6 0.8 .040 .038 .037 .034 .045 .037 .043 .042 .046 .042 .036 .033 

0.7 0.8 .058 .055 .055 .052 .069 .059 .064 .062 .082 .076 .075 .074 

0.7 0.9 .087 .086 .085 .083 .112 .108 .112 .110 .140 .137 .138 .136 
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0.8 0.9 .129 .125 .126 .122 .182 .175 .189 .185 .232 .227 .230 .224 

              

0.6 0.7 .026 .023 .023 .020 .026 .022 .025 .023 .027 .023 .025 .022 

0.6 0.8 .029 .024 .027 .022 .035 .033 .034 .032 .038 .035 .033 .030 

0.7 0.8 .044 .038 .043 .041 .060 .058 .058 .054 .071 .068 .070 .067 

0.7 0.9 .073 .069 .072 .070 .104 .100 .102 .100 .141 .136 .135 .133 

0.8 0.9 .022 .020 .019 .016 .039 .028 .037 .027 .034 .029 .028 .022 

Sample sizes of 10 for both nondiseased and diseased subjects were simulated. 

 

 
 

Tables 1 and 2 examine the comparison of Test 

size of the proposed permutation test and Braun and 

Alonzo’s permutation test in terms of their exact and 

asymptotic methods for assessing a difference in AUC 

for two continuous diagnostic test procedures when the 

areas are different for noncrossing and crossing ROC 

curves respectively. Since large computational time was 

needed for carrying out the computation of exact 

permutation, the comparisons shown in tables 1 and 2 

are limited to sample sizes that are small where result 

indicates that good agreement exists between the exact 

and normal approximation test. Tables 1 and 2 shows 

that even with small sample size of 10 for each of 

nondiseased and diseased subjects, the normal 

approximation test is adequate while the exact 

permutation test required a little computer time to 

conduct. Subsequent Tables 3 to 6 considered  

simulating the operating characteristics of the normal 

approximation test for large sample sizes since the exact 

permutation test results are essentially equivalent. 

  

Table 3. Comparison of Test size for the proposed test and that of Braun and Alonzo test with same area and non-

crossing ROC curves in term of their asymptotic approximation test. 

  
1AUC  2AUC  20, 20p q   40, 40p q   60, 60p q   80, 80p q   

   B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

0.0 .6 .6 .056 .049 .052 .049 .051 .050 .049 .047 

 .7 .7 .052 .048 .050 .048 .051 .049 .048 .046 

 .8 .8 .050 .046 .050 .048 .050 .049 .049 .048 

 .9 .9 .039 ..044 .048 .046 .048 .049 .048 .047 

           

0.25 .6 .6 .053 .049 .052 .050 .053 .052 .053 .050 

 .7 .7 .052 .049 .051 .050 .050 .048 .051 .050 

 .8 .8 .048 .047 .049 .048 .050 .050 .050 .049 

 .9 .9 .044 .045 .047 .048 .050 .050 .051 .049 

           

0.5 .6 .6 .051 ..050 .050 .050 .051 .050 .050 .048 

 .7 .7 .048 .048 .050 .050 .049 .050 .047 .046 

 .8 .8 .045 .046 .049 .050 .050 .051 .048 .046 

 .9 .9 .041 .041 .047 .049 .050 .051 .049 .047 

           

.75 .6 .6 .044 .047 .038 .042 .046 .046 .045 .046 

 .7 .7 .043 .045 .037 .041 .043 .044 .042 .043 

 .8 .8 .037 .041 .038 .040 .042 .045 .044 .046 

 .9 .9 .025 .036 .035 .039 .037 .039 .035 .038 
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Table 4. Comparison of Test size for the proposed test and that of Braun and Alonzo test with same area and 

crossing ROC curves in terms of their asymptotic approximation test. 

  
1AUC  2AUC  20, 20p q   40, 40p q   60, 60p q   80, 80p q   

   B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

0.0 .6 .6 .057 .054 .055 .054 .052 .052 .051 .051 

 .7 .7 .055 .052 .054 .053 .052 .051 .048 .049 

 .8 .8 .033 .037 .032 .035 .049 .050 .047 .046 

 .9 .9 .020 .028 .021 .025 .045 .046 .044 .045 

           

0.25 .6 .6 .054 .052 .053 .055 .051 .050 .052 .054 

 .7 .7 .053 .052 .052 .053 .053 .054 .052 .053 

 .8 .8 .040 .045 .050 .051 .050 .052 .049 .048 

 .9 .9 .019 .023 .039 .043 .043 .044 .043 .044 

           

0.5 .6 .6 .052 .054 .050 .052 .051 .053 .053 .054 

 .7 .7 .050 .051 .049 .051 .050 .052 .052 .055 

 .8 .8 .045 .047 .047 .049 .046 .049 .053 .054 

 .9 .9 .020 .023 .034 .036 .037 0.040 .039 .040 

           

.75 .6 .6 .047 .050 .050 .055 .050 .054 .051 .053 

 .7 .7 .045 .048 .046 .049 .047 .050 .049 .050 

 .8 .8 .037 .040 .037 .042 .038 .041 .040 .044 

 .9 .9 .015 .024 .026 .035 .032 .039 .038 .040 

 

 
 

In Table 3, we compared and presented the 

estimates for continuous data of the test size of the 

proposed asymptotic normal approximation test and 

normal approximation test proposed by Braun and 

Alonzo (2008). In Table 4 where the areas are same 

with crossing ROC curves, the test size is the statistical 

power, since the proposed method is designed to detect 

a difference in AUCs but formally test the null 
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hypothesis for the equality of AUCs subject to 

exchangeability. In Tables 3 and 4 where the AUCs are 

same, for moderately large sample sizes such as 40 to 

60 with non-crossing ROC curves having at least 

moderately high correlation between diagnostic tests, 

the proposed test showed a less conservative test size 

compared to Braun and Alonzo’s test. This effect is 

especially evident with smaller sample sizes. In Table 4 

when the AUCs are the same with crossing ROC 

curves, the test size of the proposed test  is very close to 

that of the Braun and Alonzo’ test since both tests is for 

detecting a difference in AUCs. Therefore the two 

methods are not advisable to be used to detect crossing 

ROC curves when the AUCs are the same. The 

closeness of the test size and the nominal level of 

significance suggests that two permutation tests 

(proposed test as well as Braun and Alonzo, 2008) 

which in comparison provide an asymptotic normal 

approximation of test of equality of AUCs are 

comparable in statistical power. 

  

Table  5. Comparison of power for the proposed test and that of Braun and Alonzo’s test in terms of their 

asymptotic approximations with different area and crossing ROC curves. 

1AUC  2AUC  20, 20p q   40, 40p q   60, 60p q   80, 80p q   

  0.0   0.25   0.5   0.75   

  B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

.6 .7 .076 .071 .082 .086 .090 .102 .180 .200 

.6 .8 .142 .135 .179 .183 .213 .236 .544 .575 

.7 .8 .251 .240 .332 .339 .422 .450 .880 .883 

.7 .9 .403 .387 .535 .541 .655 .680 .937 .954 

.8 .9 .476 .459 .566 .572 .656 .673 .996 .998 

          

.6 .7 .079 .076 .087 .090 .092 .106 .197 .215 

.6 .8 .154 .145 .194 .201 .232 .257 .593 .624 

.7 .8 .277 .267 .366 .375 .459 .489 .914 .926 

.7 .9 .452 .437 .587 .595 .705 .735 .983 .987 

.8 .9 .537 .532 .612 .621 .822 .820 .995 .998 

          

.6 .7 .084 .081 .093 .102 .101 .118 .275 .289 

.6 .8 .174 .167 .221 .227 .265 .293 .777 .801 

.7 .8 .323 .313 .423 .435 .524 .552 .979 .988 

.7 .9 .531 .520 .623 .631 .874 .831 .993 1.00 

.8 .9 .542 .535 .724 .753 .924 .953 .993 .994 

          

.6 .7 .091 .088 .115 .135 .125 .162 .375 .406 

.6 .8 .205 .202 .350 .386 .410 .480 .914 .923 

.7 .8 .410 .401 .534 .542 .896 .892 1.00 1.00 

.7 .9 .671 .663 .695 .724 .811 .856 .998 1.00 

.8 .9 .118 .137 .226 .286 .526 .586 .623 .685 

 

Table 6. Comparison of power for the proposed test and that of Braun and Alonzo in terms of their normal 

approximations with different area and non-crossing ROC curve 

1AUC  2AUC  20, 20p q   40, 40p q   60, 60p q   80, 80p q   

  0.0   0.25   0.5   0.75   

  B & A MWSRT B & A MWSRT B & A MWSRT B & A MWSRT 

.6 .7 .076 .068 .081 .081 .088 .093 .119 .201 

.6 .8 .142 .129 .184 .180 .239 .244 .612 .613 

.7 .8 .261 .245 .368 .352 .469 .475 .920 .921 

.7 .9 .414 .391 .568 .562 .711 .715 .985 .985 

.8 .9 .429 .421 .589 .589 .702 .725 .994 .994 

          

.6 .7 .076 .071 .081 .082 .090 .096 .219 .222 

.6 .8 .153 .139 .198 .198 .256 .263 .665 .668 

.7 .8 .288 .270 .393 .389 .510 .520 .952 .952 

.7 .9 .466 .446 .619 .616 .767 .771 .987 .987 

.8 .9 .479 .466 .634 .635 .787 .786 .996 .998 

          

.6 .7 .077 .070 .084 .090 .096 .107 .252 .258 

.6 .8 .169 .159 .226 .230 .284 .300 .745 .748 

.7 .8 .330 .315 .450 .450 .572 .589 .978 .980 
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.7 .9 .546 .538 .702 .702 .828 .838 .989 .989 

.8 .9 .526 .523 .332 .419 .857 .847 .999 .999 

          

.6 .7 .082 .078 .092 .097 .102 .127 .309 .316 

.6 .8 .145 .135 .263 .271 .336 .364 .845 .846 

.7 .8 .220 .208 .347 .374 .465 .487 .976 .976 

.7 .9 .117 .104 .204 .451 .516 .846 .997 .997 

.8 .9 .103 .116 .123 .263 .330 .417 .636 .638 

 

In Table 5 and 6 when the different AUC is at 

least 0.8 with a correlation of ρ≥0.4 having crossing and 

non-crossing ROC curves respectively, the proposed 

permutation test has greater statistical power compared 

to the test proposed by Braun and Alonzo (2008). This 

is because the proposed permutation test is less 

conservative in the stated range of parameters. When 

the correlation is less than 0.4 with different AUCs less 

than 0.8, Braun and Alonzo’s test has slightly greater 

statistical power because at this region they test size is 

slightly high. As sample size increases, the operating 

characteristics of the two permutation tests near one 

another.  

 

Therefore, in summary our simulations showed 

for the proposed permutation test the test size and 

nominal level of significance are in close agreement for 

sample sizes that are reasonably small. Again, for 

sample sizes that are small with large AUCs and 

moderate correlation between diagnostic tests the 

proposed test has operating characteristics that is better 

than the permutation test proposed by Braun and 

Alonzo (2008). Finally, the statistical power of the 

proposed permutation test to detect crossing ROC 

curves with same AUCs is near to the nominal level of 

significance. This means that for crossing of ROC 

curves to be detected, the AUCs of the two curves must 

be different under the range of parameters considered. 

The Test size and statistical power of each test were 

computed as the percentage of 10,000 simulations and 

the null hypothesis of 0AUC   was rejected at a 

nominal significant level of 0.05.We generated the 

permutation of the empirical probability distribution of 

ˆAUC  in each simulation by generating 10,000 

random permutations of the diseased and nondiseased 

labels. 

 

 

 

6. Real Data Example and Results 
By simple random sampling method, a total of 

60 pregnant women underwent two types of diagnostic 

tests for the in-depth confirmation of gestational 

diabetic mellitus (GDM) such that their test results were 

paired or matched to each other. These diagnostic tests 

are a 75g Oral Glucose Tolerance Test (OGTT) and a 

100g OGTT. The data is used to evaluate the feasibility 

of the proposed permutation test at a nominal level of 

0.05. The characterization and criteria adopted for 

diagnosing antenatal mothers who underwent either 75g 

OGTT /100g OGTT were 2hr OGTT characterization 

while the criteria was ≥ 155mg/dl for one to be 

considered diseased/positive (coded 1) for GDM while 

<155mg/dl is considered nondiseased/negative (coded 

0) for GDM. Exchangeability of the measured test 

results is a vital condition to achieve result given that 

these results are paired. If the null hypothesis is true, 

then we can infer that the subjects’ test results in 

diagnostic 1 and 2 are exchangeable and so the 

permutation test is applied on raw scores and are not 

ranked. It showed that there exist a number of pairs 

with tied test results, even though the test results are 

continuous. The null hypothesis is that the 2hours 75g 

OGTT contributes the same diagnostic information or 

accuracy as the 2hours 100g OGTT. That is, 

1 2AUC and AUC  of the two diagnostic tests are 

equal. The real data if analyzed will evaluates the 

performance of the proposed estimates. It will compare 

the performance of the two diagnostic tests in terms of 

ROC curves between the two diagnostic tests and a 

crossing ROC curve will emerge. The crossing ROC 

curves will have the areas for the two diagnostic test 

procedures. In applying the data, the diagnostic test 

results need to have a bivariate binormal distribution. 

But according to Wang (2015), most powerful test does 

not exist for testing bivariate normal distribution. 

Therefore, for each test result, one resorted to checking 

only the univariate normality. 
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Checking for univariate normality of two 

diagnostic test results by Shapiro-Wilk test reveals that 

the p-values for the diagnostic tests 1 and 2 for the 

nondiseased subjects are respectively 0.6124 and 

0.8975 while that of diseased subjects for the diagnostic 

tests 1 and 2 are respectively 0.6345 and 0.8765. The 

estimates of 
1 2AUC and AUC  for diagnostic tests 

are 0.668 and 0.887 respectively. Hence using the 

proposed permutation test, the p-value of 0.0312 is 

rejected at a nominal level of 0.05.Using the Braun and 

Alonzo’s permutation test, the null hypothesis is also 

rejected since the P-value is 0.0387. 

 

7. DISCUSSION   

The proposed permutation test compared the 

performances of two diagnostic tests for paired sample 

design. It conducted exact permutation test by 

implementing an algorithm derived for the purpose and 

derived an asymptotic normal approximation for large 

sample size based on proposed modified Wilcoxon 

signed rank test statistic. In comparing paired ROC 

curves, our design is to have increased power to detect a 

difference in the AUC. The proposed permutation test 

which is based on between-subject permutations of the 

labels of the subjects within each diagnostic test for 

detecting differences between ROC curves was 

necessary to tackle the problem of exchangeability of 

the labels between two diagnostic tests within subject. 

The proposed test is designed to assess a change in the 

AUCs in a continuous matched pair of data from two 

diagnostic tests having both diseased and nondiseased 

subject in each of the test where permutations are made 

between subjects particularly by shuffling the diseased 

and nondiseased labels of the subjects within each 

diagnostic test.  

 

1. It will be recalled that DeLong et al., (1988) found 

that to have appropriate test size and increased 

statistical power, the necessary conditions are that 

the sample size for subject labels must be at most 

60, the average of two AUCs must be at least 0.80 

and the correlation within subjects test results 

should be at least 0.4.Therefore, at small average 

AUC, low correlation between diagnostic tests and 

at sample size higher than 60, the method by 

DeLong et al., (1988) has improved test size and 

greater power than our permutation test otherwise 

permutation has improved test size and greater 

power. 

2. Venkatraman and Begg(1996) found that for 

noncrossing ROC curves, the statistical power of 

DeLong et al., is higher than that of Venkatraman 

and Begg because the procedure of Venkatraman 

and Begg is designed to detect differences in ROC 

curves as against detecting differences only in 

AUCs. In other words, when ROC curves cross, the 

power of a given test is higher because it detects 

difference in ROC curves but if ROC curves do not 

cross, the test that compares only the equality of 

AUCs has higher power eg. DeLong et al.,  test. 

Therefore, Venkatraman and Begg (1996)test has 

lower power for noncrossing ROC curves as it 

detect differences in ROC curves while in the same 

scenario, DeLong et al., test has higher power as it 

detects differences in AUCs.  

3. Our permutation test though tests the null 

hypothesis of equality of AUCs, it is designed to 

detect a difference in AUC as it compares the 

correlation in ROC curves when the ROC curves 

cross each other. While our permutation test 

formally tests a difference in ROC curves and 

detects a difference in AUC, it has higher power 

than DeLong et al.,’s conventional test that only 

detects difference in AUCs. 

4.  Result showed that our proposed test has 

comparable power to the test conducted by Bandos 

(2005) as well as Braun and Alonzo (2008) who 

also proposed permutation tests but has superior 

operating characteristics in some ranges of 

parameters owing to the pattern of between 

subjects permutations as well as the fact that our 

proposed test is designed to consider the signs of 

values as well as the absolute ranks of values. 

Braun and Alonzo (2008) considered only the signs 

of values. Our permutation test is slightly 
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conservative but has an excellent power to detect a 

crossing alternative based on simulation results.  

5. The algorithm for calculating the exact permutation 

distribution of ˆAUC  enabled us to obtain a 

normal approximation to the exact procedure for 

small sample size. The presence of an asymptotic 

normal approximation method provides a simple 

and exact approximation to the permutation test for 

large sample size.  

6. Using the real data to illustrate the feasibility of the 

proposed permutation test showed that the null 

hypothesis of equality of diagnostic information is 

rejected on account of one diagnostic test showing 

superiority over another and the proposed test 

showing higher power over existing tests. These 

results are consistent with the findings obtained by 

the proposed permutation test by Bandos et al., 

(2005) as well as Venkatraman and Begg(1996). 

7. The problem with permutation tests has been high 

computational demands, viz; space and time 

complexities. Available permutation procedures 

can sample from the permutation sample space 

rather than carrying out complete enumeration of 

all possible distinct permutations. These available 

procedures cannot avoid the possibility of drawing 

the same sample more than once, thereby reducing 

the power of the permutation test, see 

Opdyke(2003). This study formulates and 

implements a sure way of obtaining exact 

permutation distribution of paired observations by 

ensuring that a complete enumeration of all the 

distinct permutations is achieved. This produces 

exact p-values and ensures that the probability of a 

type I error is exactly α. The algorithm can be 

extended to any sample size, depending on the 

processor speed and memory space of the computer 

being used to implement the algorithm. 

 

1. SUMMARY AND CONCLUSIONS 

1. With two diagnostic tests having different AUCs 

with non-crossing ROC curves, DeLong et al., area 

test which tests for the equality of AUC would 

have been a good option to have better operating 

characteristics with little conservative measures of 

test size (Type I error) than any other test such as 

Venkatraman and Begg (1996) that considers 

testing to detect difference in ROC curves.  

2. Since most of the diagnostic researches yield 

matched data, it is important to take into account 

the correlated nature of the diagnostic tests to 

reduce variability among values. 

3. When two diagnostic tests have crossing ROC 

curves with same or different AUCs, our proposed 

test in considering accessing a difference in AUCs 

have better operating characteristics with little 

conservative measures of test size than the Braun 

and Alonzo’s test of (2008). Based on simulation 

result, our permutation test is slightly conservative 

and has an excellent power to detect a crossing 

alternative.  

4. The p-value obtained through the exact 

permutation approach is exact. This process can be 

difficult because of its computational intensive. For 

small sample sizes, the exact permutation 

distribution of a test statistic and its asymptotic 

equivalent can be quite discrepant.  

5. A proposed algorithm was implemented in Intel 

Visual FORTRAN for computing the exact 

distribution of the paired test results of two 

diagnostic tests by carefully enumerating all the 

distinct permutations of the test results. The 

permutation algorithm presented in this study beats 

the limitations and difficulties inherent in the exact 

permutation approach that probably led to the 

introduction of other approximate methods, which 

do not truly provide the exact distribution of a test 

statistic. 

6. Since the proposed permutation test formally test 

the null hypothesis of the equality of AUC, the 

rejection rate otherwise called test size becomes the 

statistical power when the ROC curves cross each 

other. 

7. For small and moderate sample sizes with same 

and large AUC as well as for moderate correlation 

between the diagnostic tests with non-crossing 

ROC curves, the test size shown by the proposed 

test is less conservative than the Braun and Alonzo 

test. This means that it is not advisable to employ 

the proposed permutation test in detecting crossing 

ROC curves when its AUCs are the same because 

its test size, talking about the power is very close to 

that of Braun and Alonzo test(type I error).  

8. The proposed permutation test makes provision for 

an approximate test of equality of AUCs due to the 

fact that the test size is very close to the given level 

of significance.  

9. As the sample size increases, the operating 

characteristics of these comparative tests (proposed 

test as well as Braun and Alonzo,2008) get closer 

to each other. In particular, when the ROC curves 

cross, the test size or rejection rate of the proposed 

test is higher when the correlations and average of 

AUCs are higher. Therefore, our simulations shows 

that the test size of the proposed test and the 

nominal value shows close agreement when the 

sample size is reasonably small. 

10. The proposed permutation test has better operating 

characteristics when the correlation between 

diagnostic tests is moderate at large average AUC 

and small sample sizes than Bandos et al., as well 

as Braun and Alonzo’s tests.  

11. So the proposed test has power close to the 

significance level in detecting when ROC curves 

cross with equal AUCs within the range of 

parameters considered. This means that for the null 

hypothesis to be rejected, the AUCs of the two 

ROC curves must differ.  
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12. In applying the real data, when we compared the 

proposed test to Braun and Alonzo’s permutation 

test in terms of their p-values, the proposed 

permutation test is more powerful since it has the 

more likelihood of rejecting the null hypothesis. 

Graph of ROC curves in figure 5 showed that 2 

hours 100g OGTT diagnostic test is superior at a 

time that the specificity is greater than 0.7. As soon 

as the specificity decreases, the disparity between 

the two diagnostic tests procedures reduces.  Also 

since the null hypothesis for the univariate normal 

is rejected given the disparity in the p-values of the 

diagnostic tests for nondiseased and diseased as 

well as the values of AUCs, the two diagnostic test 

procedures did not contribute equivalent diagnostic 

information. This shows that 2 hours 100g OGTT 

diagnostic test is more suitable for discriminating 

non-diseased from diseased subjects than 2 hours 

70g OGTT diagnostic test procedure meaning that 

the two procedures come from different population. 

13. Simulation study showed that the proposed test can 

be a very suitable alternative to the test by Braun 

and Alonzo (2008) that only consider the direction 

of values. An application to real data set also 

supports our claim. 

14. Since the MWSR test is easy to compute as well as 

easy to communicate to the potential uses of the 

procedure, we can use this test conveniently. The 

strength of our proposed test is that it has easy 

implementation to discriminate diagnostic test 

procedures even by non-statisticians. 

 

We recommend the use of permutation tests 

for comparing two diagnostic tests that are correlated as 

it provides a more exact results with small sample sizes 

which is the demand of clinical practices. 

 

APPENDIX   A1 

An Algorithm for Calculating the Exact Distribution Of ˆ .AUC  
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