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Abstract: An effective means of incorporating the time dilation effect into relativity theory 

is to assume that the unit of time is directly proportional to γ (u) = (1-u2/c2)-0.5 on an object 

such as a light source that has been accelerated to speed u relative to the laboratory.  In 

recent work it has been shown that a similar theoretical approach can be applied to other 

physical quantities such as length and inertial mass, and as a result, to all other mechanical 

properties in the mks system.  This concept of uniform scaling can also be applied 

successfully for gravitational interactions.  The question as to how the units of 

electromagnetic quantities such as electric charge and magnetic induction change with both 

acceleration and varying position in a gravitational field is therefore of considerable interest.  

Since the unit of electric charge can be chosen independently of the value of the permittivity 

of free space ε0, it is shown that all electromagnetic quantities can also be assigned units 

directly in the mks system, thereby making it a trivial matter to deduce their kinetic and 

gravitational scaling behavior.  For example, the unit of electric charge can be 1 J as long as 

ε0 has units of 1 N.  A table is given that makes a comprehensive comparison of the standard 

units in the Giorgi system with those in two such direct mks schemes.  A simple procedure 

is also described for changing the numerical values of the units in a systematic manner by 

dividing the various electromagnetic quantities into five distinct classes.  This allows one to 

equate the value of ε0 to 1/4π, for example, similarly as for the Gaussian system of units, 

while still retaining the same formulas as in the Giorgi system. 

Keywords: Lorentz Force, clock-rate proportionality, Lorentz transformation (LT), 

alternative Global Positioning System-Lorentz transformation (GPS-LT), uniform scaling of 

physical properties, amended version of the Relativity Principle (RP). 
Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 
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I. INTRODUCTION 

In recent work (Buenker, R. J. 2018) it has 

been shown that one can conveniently describe 

relativistic effects such as time and mass dilation by 

assuming that the units of physical quantities vary in a 

well defined manner depending on the state of motion 

of the observer and the object of measurement.  A 

similar conclusion has been reached for gravitational 

interactions (Buenker, R. J. 2008a).  The basic idea is 

simply to look upon the slowing down of clocks upon 

acceleration as a change in the unit of time in their 

current rest system (Sard, R. D. 1970a).  In effect, there 

is a uniform scaling relationship between the values of a 

given physical quantity for two observers who are in 

relative motion to another and/or are at different 

positions in a gravitational field.   

 

In kinematics there is an important simplifying 

feature in such a discussion because of the fact that all 

physical quantities can be expressed in terms of the 

units of length (m), time (s) and mass (kg).  It is 

therefore sufficient to know how the latter three 

quantities scale in order to deduce the corresponding 

relationships for other properties such as angular 

momentum, energy and force.  For example, since we 

know that the units of energy and time both increase 

upon acceleration to speed u in direct proportion to γ (u) 

= (1-u
2
/c

2
)

-0.5
,  it follows that the unit of angular 

momentum must scale as the square of this factor since 

this property is defined as the product of the latter two 

quantities.  Similarly, the unit of frequency must scale 

as γ
-1

 because this quantity is defined as the reciprocal 

of a time period.   

 

The fact that the speed of light is independent 

of the state of motion of the observer fixes the 

corresponding scale factor for length to also be γ, from 

which one can safely conclude that the relative velocity 

of two objects is the same for observers in different rest 

systems.  The latter conclusion only holds for observers 

located at the same gravitational potential, however, 

because the rules for the uniform scaling of units also 
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depend on one’s position in a gravitational field 

(Buenker, R. J. 2008a).  The key point is that 

knowledge of how the meter (m), second (s) and 

kilogram (kg) vary from one of state of motion to 

another allows one to apply this information to the 

scaling of all other kinematic quantities. 

 

The situation is not so simple when it comes to 

the scaling of electromagnetic quantities such as charge 

and electric and magnetic fields, however.  The 

fundamental equations in this field of physics are 

expressed in terms of a rather large set of quantities that 

are not directly connected to the above three units of 

kinematics.  The Giorgi system was introduced (Reitz, 

J. R., & Milford, F. J. 1960a) in 1901 in order to ensure 

that the results of electromagnetic calculations 

ultimately can be expressed in terms of the above (mks) 

system of units, however.  The question that arises in 

the present context is how do electromagnetic quantities 

such as charge, magnetic induction, electric 

displacement and inductance, to name just a few, vary 

with the state of motion of the observer or object of the 

measurement as well as with their respective locations 

in a gravitational field.  In order to answer this in a 

definitive manner, it proves helpful to carry out an 

extensive review of the Giorgi system of 

electromagnetic units, and particularly to carefully 

understand how it is related through experiment and 

theory to the mks system. 

 

II. Coulomb’s Law and the Definition of Electric 

Charge 

The simplest way to begin this analysis is to 

consider how Coulomb’s Law is formulated in the 

Giorgi system.   The force Fe in Newton (1 N = 1  kg 

m/s
2
) between two electric charges qi and qj (expressed 

in Coul) separated by a distance of rij m is given by the 

vector relation: 

 

                     Fe  = qi qj rij/ 4πε0 rij
3
,                     (1)  

 

Where ε0 is the permittivity of free space.  

Note that the units for ε0 are given in such a way 

(Coul
2
/Nm

2
) so as to insure that the final result is 

expressed in the mks unit of force (N).  The point that 

needs to be emphasized with regard to this equation is 

that it serves as a definition of both electric charge and 

ε0.  In order to satisfy the above requirement in the mks 

system, it is actually only necessary that the unit for the 

product of two electric charges qi qj divided by ε0 is 

Nm
2
.  This shows that there is an inherent redundancy 

in any system of electromagnetic units that cannot be 

removed by experiment.   

       

We can take advantage of this situation in the 

context of a uniform scaling procedure by defining the 

unit of electric charge to be some combination of mks 

units, that is, without introducing a new unit such as the 

Coulomb for this purpose.  We just have to make a 

corresponding choice of unit for ε0 to ensure that the 

force Fe in eq. (1) is expressed in N.  For example, the 

unit of electric charge could be defined to be the same 

as for energy (1 J = 1 N m).  That would simply mean 

that the unit of permittivity is N, since then qi qj / ε0 in 

eq. (1) has the required unit of Nm
2 

mentioned above.  

Since we know how N and m scale with the state of 

motion and position in a gravitational field (Buenker, R. 

J. 2018; & Buenker, R. J. 2008a), we can immediately 

determine how electric charge and ε0 scale on this basis 

as well.   

 

The very arbitrariness of the above choice of 

units might tend to make one feel skeptical about such a 

procedure.  What it actually shows, however, is that 

such quantities are only defined indirectly by 

experiment.  As much as we have gotten used to the 

idea of electrical charge over time, it should not be 

forgotten that there is no other way to determine its 

magnitude experimentally than to measure the force 

exerted between it and another charge when they are a 

certain distance apart. 

 

It is no less permissible to choose a system of 

electromagnetic units such that ε0 is dimensionless.  

This is in fact what is done with the older Gaussian set 

of units in which charge is expressed in esu.  In that 

system the quantity 4πε0 in Coulomb’s Law is missing 

entirely.  One can do this and still remain in the mks 

system by defining the unit of electric charge to be 

N
0.5

m.  Again, there is no a priori reason for avoiding 

such a choice because charge is only defined 

experimentally through eq. (1).  

 

There is only one other relationship that must 

be satisfied in order to extend such an mks-type system 

to the description of magnetic interactions.  The 

constant μ0 in the law of Biot and Savart (1960b) must 

satisfy the equation from Maxwell’s electromagnetic 

theory: 

 

                   ε0 μ0 c
2   

= 1,                          (2) 

 

Where c is the speed of light in free space 

(299792458 m/s).  The unit in the Giorgi system is 

N/Amp
2
 or Ns

2
/Coul

2
.  If the unit of ε0 is N, it follows 

from eq. (2) that the corresponding unit for μ0 is s
2
/Nm

2
.  

Alternatively, if ε0 is to be dimensionless, then the unit 

for μ0 becomes s
2
/m

2
.  That means in turn that in the 

latter system of units, the values of all three quantities 

in eq. (2) would be the same for all observers 

independent of their relative speed to one another 

(provided that they were all located at the same 

gravitational potential (Buenker, R. J. 2008a).
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Table 1.   Correlation of the units of electromagnetic quantities in various systems.  The standard Giorgi system is 

compared with two alternatives, the Nms and N
0.5

ms systems, whose units are exclusively multiples of N, m and s in the 

standard mks system for strictly mechanical variables.  The quantities are also subdivided into K-type scaling classes, as 

discussed in Sect. III. 

Quantity Symbol Giorgi Nms N
0.5

ms Scaling Class 

Electric charge q Coul Nm N
0.5

m K 

Permittivity ε or ε0 Coul
2
/Nm

2
 N ____ K

2
 

Current/mmf  I Amp Nm/s N
0.5

m/s K 

Permeability μ or μ0 N/Amp
2
 s

2
/Nm

2
 s

2
/m

2
 K

-2
 

Potential/emf  V Volt _____ N
0.5

 K
-1

 

Resistance/impedance R/Z Ohm s/Nm s/m K
-2

 

Electric field E Volt/m 1/m N
0.5

/m K
-1

 

Volume charge density ρ Coul/m
3
 N/m

2
 N

0.5
/m

2
 K 

Surface charge density σ Coul/m
2
 N/m N

0.5
/m K 

Electric dipole moment  μe mCoul Nm
2
 N

0.5
m

2
 K 

Electric quadrupole moment  Qij m
2 
Coul Nm

3
 N

0.5
m

3
 K 

Electric polarization P Coul/m
2
 N/m N

0.5
/m K 

Electric displacement D Coul/m
2
 N/m N

0.5
/m K 

Electric susceptibility χ Coul/mVolt N ____ K
2
 

Polarizability  α m
2
Coul/Volt Nm

3
 m

3
 K

2
 

Coefficient of potential pij Volt/Coul 1/Nm 1/m K
-2

 

Capacitance/coeff. of capacitance  C orcij Coul/Volt Nm m K
2
 

Current density J Coul/m
2
s N/ms N

0.5
/ms K 

Conductivity g Coul/msVolt N/s 1/s K
2
 

Resistivity η msVolt/Coul s/N s K
-2

 

Magnetic flux Φ Weber s N
0.5

s K
-1

 

Magnetic induction B Weber/m
2
 s/m

2
 N

0.5
s/m

2
 K

-1
 

Magnetic vector potential A Weber/m s/m N
0.5

s/m K
-1

 

Magnetic scalar potential U* Amp N/ms N
0.5

m/s K 

Magnetic dipole moment M m
2
Amp Nm

3
s N

0.5
m

3
/s K 

Magnetization M Amp/m N/s N
0.5

/s K 

Inductance L Henry s
2
/Nm s

2
/m K

-2
 

Magnetic current per unit area Jm Amp/m
2
 N/ms N

0.5
/ms K 

Magnetic intensity H Amp/m N/s N
0.5

/s K 

Reluctance  R Amp/Weber Nm/s
2
 m/s

2
 K

2
 

Admittance Y Mho Nm/s m/s K
2
 

 

Table 2. Conversion of various electromagnetic units from the Giorgi to the KNms system discussed in Sect. III (c is the 

speed of light in free space, 299792458 m/s). 

Quantity Giorgi KNms 

Electric charge 1 Coul 10
-3.5

c Nm 

Electric current 1 Amp 10
-3.5

c Nm/s 

4πε0   10
7
/c

2
 Coul

2
/Nm

2
 1 N 

μ0/4π 10
-7

 N/Amp
2
 1/c

2 
s

2
/Nm

2
 

Electric field 1 Volt/m 10
3.5

/c 1/m 

Potential 1 Volt 10
3.5

/c 

Magnetic induction 1 Weber/m
2
 10

3.5
/c s/m

2
 

Magnetic intensity 1 Amp/m 10
-3.5

c N/s 

Magnetic flux 1 Weber 10
3.5

/c s 

Electric displacement/polarization 1 Coul/m
2
 10

-3.5
c N/m 

Capacitance 1 Farad=Coul/Volt 10
-7

c
2
 Nm 

Inductance 1 Henry 10
7
/c

2
 s

2
/Nm 

       

Once the unit of electric charge has been fixed 

in the mks system, the corresponding units for all other 

quantities that occur in the theory of electricity and 

magnetism are determined by the standard equations in 

which they occur.  A fairly extensive list of such 

quantities illustrating this point is given in Table 1.  The 

corresponding units are always given in terms of those 

of force, length and time in the mks system.  Two sets 
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are given in each case, one in which the unit of charge 

is Nm and the other in which it is N
0.5

m.  The former is 

referred to as the Nms system so as to distinguish it 

from the standard mks system for purely kinematic 

quantities, the other as the N
0.5

ms system, in which ε0 is 

dimensionless. 

        

Just a few examples will be given below which 

emphasize the practicality of the concepts introduced 

above.  The unit of potential/emf  U is dimensionless in 

the Nms system since it is proportional to electric 

charge and inversely proportional to ε0 and a distance 

given in m.  It has the unit of N
0.5

 in the other system 

based on the same definition.  Since the electric field E 

is the gradient of a potential, it follows that it has a unit 

of m
-1

 in the Nms system and N
0.5

/m in the other.  The 

unit of current I is Nm/s in the former case, while that 

of resistance R (I=V/R) is accordingly s/Nm.  In the 

N
0.5

ms system, R has the unit of s/m, i.e. the reciprocal 

of that of velocity, whereas the unit for I is N
0.5

m/s. 

       

 In the Giorgi system of units, the magnetic force Fm for 

a given charge q moving with velocity v in magnetic 

field B is defined as: 

                    

   Fm  = q v × B.                            (3)  

 

It therefore follows that B has the unit of s/m
2
 in the 

Nms system and N
0.5

s/m
2
 in the N

0.5
ms system.  The 

Nms unit of magnetic flux (Weber in the Giorgi system) 

is s, consistent with the requirement that an induced 

emf, which is dimensionless in the Nms system of units, 

is given by the derivative of the magnetic flux with 

respect to time.  In the N
0.5

ms system its unit is N
0.5

s.  It 

is easy to show that the units are consistent for 

Maxwell’s equations in both of these systems of units.  

For example, the differential form of Faraday’s law of 

electromagnetic induction, 

              

  curl E = - ∂B/∂ t,                                     (4) 

 

has the units of m
-2

 on both sides in the Nms system and 

N
0.5

/m
2
 in the other. 

 

III. A Simple Scaling Procedure for Electromagnetic 

Quantities 

The interdependency of the definitions of 

electric charge q and permittivity ε0 also presents other 

options for the choice of units for electromagnetic 

quantities than those of the Giorgi system.  The esu 

system of units (Reitz, J. R., & Milford, F. J. 1960c) 

employs a much smaller unit of electric charge than 

Coul, for example, which therefore makes it 

unnecessary to include the 4πε0 factor in eq. (1), which 

is to say that in this system of units, ε0 = 1/4π.  The 

system of atomic units, in which the electronic charge e 

serves as the unit of electric charge, makes the same 

choice for ε0.  In the present section we will illustrate 

how the various electromagnetic units of the Giorgi 

system can be modified in a systematic manner so that 

the latter condition is also fulfilled for mks units. 

        

To begin this discussion it is important to note 

that the value of ε0 in the Giorgi system is based directly 

on the speed of light in mks units: the value of 4πε0 is 

equal to 10
7
/c

2
.  Since the speed of light in free space is 

no longer measured but is simply defined by 

international convention to have the above value, it 

follows that there is also no need to determine 

quantities such as the Coulomb (Coul) and ε0 that are 

ultimately based on the value of c.  A convenient 

quantity with which to scale the various standard Giorgi 

units is  

 

K = (4πε0)
-0.5 

= 10
-3.5

c = 94802.  In the 

following we will refer to the new set of units as the 

KNms system.  First, we define the corresponding value 

of the permittivity as ε0’=K
2
ε0, so that 4π ε0’= 1 N.  In 

general, the units in the new system are those given in 

Table 1 under the Nms heading, that is, with the unit of 

electric charge equal to 1 J = 1 Nm.  It should be clear, 

however, that the numerical value attached to ε0’ in the 

new system is completely independent of this choice.  

One could just as well choose the unit of charge to be N 
0.5

m, for example, or any other combination of N, m and 

s, as long as one adheres to the requirements already 

discussed in Sect. II.   

       

The objective in changing the numerical values 

of electromagnetic constants such as ε0 is clearly to 

simplify computations in this important area of physics.  

One of the problems with changing over from the 

Giorgi to the Gaussian system of units is that in many 

cases this requires using different formulas for the same 

interaction.  One can avoid this difficulty by agreeing at 

the outset that all formulas in the new KNms system 

will be the same as for the Giorgi system, since the 

latter have become standard over the past century.  Let 

us consider eq. (1) as the first example.   In order to 

retain the same form for this equation while using the 

above value for ε0’, it is simply necessary to change the 

numerical value of each electric charge.  Specifically, 

one has to change the unit of charge to K
-1

 Coul.   This 

means that the value of the electronic charge (e’) 

becomes K times larger than the standard value in Coul, 

i.e, e’ = 94802 x 1.602 x 10
-19

 J = 1.5187 x 10
-14

 J.   In 

effect then, the change from the Giorgi to the KNms 

system of units occurs by multiplying both the 

numerator and denominator in eq. (1) by the same 

factor (K
2
).   The result is that one has the same form 

for eq. (1) as in the Gaussian or atomic unit versions, 

i.e, where 4πε0= 1 and thus does not appear explicitly. 

         

The main point that the above discussion 

reveals is that it is useful to divide the variables that 

commonly occur in the theory of electricity and 

magnetism into classes according to the way in which 

their numerical values need to be scaled.  In the KNms 

system, this means that each such variable simply needs 
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to be associated with a specific power of K.  This 

information has also been given in Table 1 in each case.  

Since ε0’ = K
2
ε0, for example, it is necessary to multiply 

the Giorgi value for μ0 by K
-2

 in order to be consistent 

with eq. (2), that is, without changing the value of c.  As 

a result, μ0’ = 4π/c
2
.  Again, the preferred approach is 

not to eliminate ε0’ and μ0’ from the formulas in the 

KNms system, rather only to change their numerical 

values relative to those in the Giorgi mks system so that 

the form of the standard equations in the latter system is 

completely retained. 

       

Other quantities that belong to the same K-

class in Table 1 as electric charge are charge densities ρ 

and σ, dipole moment μ, quadrupole moment Q, current 

I, current density J, magnetic dipole moment m, 

magnetization M and magnetic intensity H.  The 

corresponding quantities of K
-1

 type are: electric 

potential U or emf, electric field E, magnetic field (or 

induction) B, magnetic flux Φ and magnetic vector 

potential A.  A check of all formulas in which the latter 

quantities appear shows that they always occur with 

counterparts in the K
 
class mentioned first, as, for 

example, q and B in eq. (3) or q and E in the 

corresponding expression for electric force, thereby 

eliminating K in the overall formulas.  

       

Some quantities do no not have to be scaled at 

all (K
0
-type).  They include all dimensionless quantities 

such as magnetic susceptibilities and refractive indices.  

The same is of course true for all non-electromagnetic 

quantities such as force, energy and angular 

momentum.  A less trivial example is the Poynting 

vector (E × H), which is a product of a  

 

K
-1

- and K-type variable, respectively.  All 

other commonly occurring quantities are either of K
2
- 

or K
-2

-type.  In addition to ε0 among the former are the 

dielectric constant ε and electrical susceptibility χ 

(Table 1), as well as polarizability, capacitance, 

reluctance, conductivity and admittance.  Some 

examples of K
-2

-type are in addition to μ0:  permeability 

μ, resistance, coefficient of potential pij, resistivity η 

and inductance L.  The latter quantity is defined as 

dΦ/dI, which is a ratio of a K
-1

–type quantity to the 

current, which is of K-type. 

       

The conversion factors between the Giorgi and 

the present KNms systems of electromagnetic units for 

a number of the most commonly used quantities are 

given in Table 2. Unlike the case for the corresponding 

conversion between the Gaussian and Giorgi systems 

(Reitz, J. R., & Milford, F. J. 1960c), the formulas in 

which they are to be used respectively are exactly the 

same, as discussed above.  To be specific, we have 

given these factors as functions of c rather than of K 

itself.  Clearly, any other value of K could be used 

while still allowing the Giorgi formulas to be retained 

in the new system of units.  The value of the electric 

charge in any such system of units is K times that of the 

numerical value in the Giorgi system (e=1.602x10
-19

).  

As long as one adheres to the scheme of dividing the 

variables into K-type classes according to the 

prescriptions of Table 1, this information is sufficient to 

characterize any new system of this type.  In other 

words, the scaling procedure is always perfectly defined 

by the value chosen for K in a specific instance.   

 

IV. Rules for Kinetic and Gravitational Scaling  

In previous work (Buenker, R. J. 2018; 

&Buenker, R. J. 2008a) is has been shown that the 

properties of all objects are subject to a uniform scaling 

when they are either accelerated or change their 

position in a gravitational field.  The exact nature of the 

scaling for a given property must be deduced from 

experiment in each case.  For example, one knows from 

studies of the transverse Doppler effect that clocks slow 

down when they are accelerated (Sard, R. D. 1970a).  

Specifically, the periods of clocks and the lifetimes of 

metastable particles (Ayres, D. S. et al., 1967) increase 

by a factor of γ = (1-u
2
/c

2
)

-0.5 
when they

 
are accelerated 

to speed u relative to their original location.  A 

convenient way of describing this phenomenon is to 

assume that the unit of time is γ s in the rest frame of 

the accelerated object.  As discussed in the above work 

(Buenker, R. J. 2018; &Buenker, R. J. 2008a), the units 

of inertial mass and length, i.e. kg and m, change in 

direct proportion to that of time, so this makes the 

mechanics of kinetic scaling particularly easy to apply.   

       

The fundamental assumption behind such a 

procedure is that measurement is strictly objective, that 

is, rational.  This means, for example, that when the 

observer has been accelerated from the same location, 

his measurements are affected thereby in a completely 

straightforward manner.  If his unit of time is γ (O) s 

and that of the object is γ (M) s, it follows that all his 

timing measurements will differ from the corresponding 

in situ values by a factor of Q= γ (M) / γ (O).  

Moreover, the same factor applies to his measurements 

of the inertial mass and length of the object.  We will 

refer to this principle of objectivity (or rationality) of 

measurement below as the PRM (Buenker, R. J. 2017). 

       

The same principle allows us to scale other 

mechanical quantities such as angular momentum, 

energy and force (Buenker, R. J. 2018).  One only has 

to know the composition of the unit of a given property 

in terms of m, kg and s.  For example, the unit of energy 

is the Joule (J), which is defined in the mks system as 1 

kg m
2
/s

2
.  Since we know that each of the latter three 

quantities varies in direct proportion to Q as defined 

above, it follows that the same must hold true for this 

derived quantity.  In turn, the unit of angular 

momentum, which is defined as 1 J s = 1 kg m
2
/s, must 

scale as Q
2
.  In this way, all the fundamental equations 

of mechanics retain the same form for all observers in 

relative motion, even though the individual quantities 

contained in them differ from one observer to another.   
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Accordingly, neither the state of motion of the 

observer nor that of the object of measurement affects 

the measurement of certain properties. The two most 

prominent examples are force and velocity.  Force has 

units of kg m/s
2
, while speed or velocity is expressed in 

m/s.  In both cases, the number of fundamental 

quantities in the mks system is the same in both the 

numerator and the denominator, so the various Q 

factors in the uniform scaling procedure are simply 

cancelled on a completely general basis.  The latter fact 

is obviously consistent with Einstein’s second postulate 

of the special theory of relativity (Einstein, A. (1905) 

that requires the speed of light in free space to be the 

same for all observers in relative motion, as already 

mentioned in the Introduction, but it goes beyond this.  

It states that the relative speed of any two objects is the 

same for all such observers (Buenker, R. J. 2015a).   

        

Each of the above statements only holds on a 

general basis when the observer and the object are at the 

same position in a gravitational field.  When this is not 

the case, a different set of scaling factors needs to be 

considered (Buenker, R. J. 2008a).  The basic idea 

behind this aspect of uniform scaling is due to Einstein 

(Einstein, A. 1907).  He was the first to point out that 

clocks run faster at higher altitude.  If the difference in 

height is h and the acceleration due to gravity is g, then 

the clock at the higher gravitational potential runs A =1 

+ gh/c
2
 times faster.  Just as before with kinetic scaling, 

we assume that the PRM is valid in this situation as 

well (Buenker, R. J. 2017).  If the corresponding factor 

is A (O) for the observer at his location in the 

gravitational field, while it is A (P) for the object, the 

ratio A (P)/A(O) must be used to multiply the in situ 

value for any elapsed time measured for the object in 

order to quantitatively predict the observer’s findings.  

In previous work (Buenker, R. J. 2008a), the reciprocal 

of this ratio has been defined as S, and is to be used in 

an analogous manner as the kinetic scaling factor Q 

discussed above.  In this case, however, distance scales 

as S
0
 while both time and inertial mass scale as S

-1
.  

Accordingly, the unit of energy scales as both Q and S 

(Buenker, R. J. 2008a) because of its definition as kg 

m
2
/s

2
, while the unit of force (N) scales as Q

0
 and S 

because it has only a single factor of inertial mass in its 

numerator.  

       

The main reason for converting to a system of 

electromagnetic units in which quantities are expressed 

exclusively in terms of m, kg and s is that one can use 

this information directly to obtain a consistent method 

of uniform scaling in this area of physics as well.  As 

discussed in Sect. II, this can be done quite easily, but it 

must be recognized that there are many such systems 

possible.  Two of them are described in Table 1.  If one 

takes the Nms system, for example, the electric charge 

has the same unit as energy, namely 1 J=1 Nm.  In this 

case, charge scales as Q and S in the above notation.  If 

one employs the N
0.5

ms system on the other hand, 

electric charge still scales as Q because N scales as Q
0
 

and m as Q, but as S
0.5 

since N scales as S and m as S
0
.  

The key point is that there is a redundancy in making 

these choices because all that is actually required is that 

the ratio of q
2
/ε0 has units of Nm

2
 in the mks system.  

The latter quantity scales as Q
2
 and S according to the 

above discussion.  In the Nms system ε0 has N as unit, 

whereas it is dimensionless in the N
0.5

ms system, so it is 

seen that this requirement is met in both cases.   

       

In any one system of electromagnetic units it 

thus becomes a simple matter to discern the kinetic and 

gravitational scaling properties of all quantities in this 

branch of physics.  One just has to know the mks 

composition of a given quantity and then make use of 

the information of how each of these three fundamental 

quantities scales with Q and S.  It is assumed thereby 

that measurements in this field, as well as all other areas 

of physics, are perfectly objective, that is, they must 

conform to the PRM discussed above (Buenker, R. J. 

2017).   

 

As intuitively reasonable as the latter principle 

appears to be, the fact is that it is common to see it 

violated in conventional discussions of relativity.  This 

starts with the belief that two clocks in relative motion 

can both be running slower than the other.  This is in 

clear violation of the PRM since, if true, it would mean 

that two observers could disagree on which elapsed 

time is greater for two events. The latter position has 

been contradicted by the experiments of Hafele and 

Keating (Hafele, J. C., & Keating, R. E. 1972) with 

circumnavigating airplanes, however, and in more 

recent history, by the methodology of the Global 

Positioning System (GPS).  This work shows that 

clocks are slowed when they are accelerated, and that at 

any one time it is perfectly clear how much slower one 

clock is than another, regardless of who is making the 

comparisons (Buenker, R. J. 2008b).              

 

Therefore, it is not only reasonable to assign 

definite units for all physical quantities in each rest 

system, it is essential to do this if one is to be able to 

predict with certainty the values that two observers in 

relative motion or at different locations in a 

gravitational field will measure for the same object . 

 

V.  CONCLUSION  

The fact that different sets of kinetic and 

gravitational scaling factors for quantities such as 

electric charge and magnetic fields will lead to the same 

predictions emphasizes that there is a qualitative 

difference between mechanical quantities such as 

distances and lifetimes and their counterparts in the 

field of electromagnetism.  Over time we have come to 

believe that we experience electric charge directly, for 

example, but the fact is that this is only a theoretical 

quantity that allows us to calculate the Coulomb force 

between particles at any distance.  Force is something 

very tangible whereas charge is not, despite what our 

intuition and training tell us.  The determination of a B 
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field also can only be accomplished by measuring the 

force between electric charges in relative motion.  All 

the other myriad quantities mentioned in Table 1 have 

definitions that in one way or another involve explicit 

measurements of such forces. 

       

It should therefore not be surprising to 

discover that there is an element of arbitrariness in the 

way the kinetic and gravitational scaling of 

electromagnetic quantities can be specified 

theoretically.  As long as one remains consistent, that is, 

adheres to the simple restrictions outlined in Sect. II, 

one system of electromagnetic units will inevitably lead 

to the same set of measured values for force, distance 

and elapsed time as any other.  This realization is at 

odds with what one commonly finds in the literature 

(Sard, R. D. 1970b), namely that electric charge is a 

relativistic invariant.  The argument given for the latter 

conclusion is typically based on the relativity principle 

and the fact that in situ measurements of a given charge 

are completely independent of the state of motion of the 

observer.  The same can be said of the lifetimes of 

metastable particles, however, and we know that these 

quantities do change with the state of motion or position 

in a gravitational field.  

        

The discovery of time dilation actually 

requires that one be more specific in defining the 

relativity principle than is usually the case.  One should 

add that, although the laws of physics are the same in 

all inertial systems, the units in which the various 

quantities contained in them are expressed are not 

necessarily equal.  In situ measurements do not vary 

from one inertial system to another for the simple 

reason that the scaling of such units is completely 

uniform.  The same holds true for in situ measurements 

at different gravitational potentials.  The only way that 

one can discern how such units change is to carry out 

measurements in which the observer is not at the same 

gravitational potential as the object or is in relative 

motion to it.  Even when this is done, however, one is 

still free to choose how electromagnetic quantities 

should scale because of the redundancy in the definition 

of electric charge and permittivity discussed in Sect. II.  

More details concerning this subject may be found in 

earlier references (Buenker, R. J. 2015; & Buenker, R. 

J. 2014).     
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