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Abstract: In this paper, we introduce an Artificial Neural Network (ANN) classifier for 

human activity recognition. The proposed system is divided to three stages; first we do 

segmentation for raw data collected for two data sets WHARF and UCI-HAR to segment 

length 128 and 256 with 50% overlap for WHARF, and 128, 256 and 512 with 50% overlap 

for UCI_HAR. Second, for each segment, a set of time and frequency domain features are 

extracted and delivered to the ANN classifier. From a practical point of view, activity 

classification based on segments of data compared to the use of whole raw data is more 

suitable and enables faster classification process, especially for short activities.  The 

proposed system is tested against other classifiers such as support vector machines (SVM), 

naive Bayes, and k-nearest neighbor (KNN) where ANN gives the best recognition rate. For 

WHARF dataset, the average accuracy is 68% for segment length 128 and 80% for 256 

segment length. On the other hand, employing accelerometer data only in UCI-HAR 

dataset, the average accuracy is 93.9% for segment length 128, 94.6% for segment length 

256 and 96.3% for segment length 512. While using gyroscope data in the same dataset 

results in an average accuracy of 77.96% for segment length 128, 83.75% for segment 

length 256 and 88.96% for segment length 512. 

Keywords: Human Activity Recognition, Artificial Neural Networks, Data Segmentation, 

Segment  length, Training Time 
Copyright © 2020 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

INTRODUCTION  
Human Activity Recognition (HAR), which is 

the process of recognizing daily activities (DA) of 

people, became an active research topic in recent days. 

HAR can be used to monitoring and taking care of 

elderly and disabled people as well as children (Planinc, 

R., & Kampel, M. 2013, December). It is also used in 

home automation e.g. automatic monitoring of lighting, 

computers, heating and air conditions (Al Zamil, M. G. 

et al., 2017).  

 

HAR can be divided into to two approaches, 

The first is based on visual data (computer vision) 

(Moussa, M. M. et al., 2015; & Poppe, R. 2010) and the 

second employs data collected from one or more 

sensors such as tri-axial accelerometer (Aguirre, P. L. et 

al., 2017; Aguirre, P. L. et al., 2015; & Bruno, B. et al., 

2014, August), tri-axial Gyroscope (Marinho, L. B. et 

al., 2016, December; & Voicu, R. A. et al., 2019), 

magnetometer (Voicu, R. A. et al., 2019) or heart rate 

belt sensor with ordinary sensor (Oniga, S., & Sütő, J. 

2014, May). The latter approach is more usable due to 

the availability of low cost sensors especially those 

available in smart phones (Jobanputra, C. et al., 2019; 

Sousa Lima, W. et al., 2019; & Shoaib, M. et al., 2016) 

and the low computational resources required compared 

to image processing based approach. 

 

Activity Recognition (AR) employing sensory 

data can be implemented on raw data (Aguirre, P. L. et 

al., 2017) or segmented data (Planinc, R., & Kampel, 

M. 2013, December; Al Zamil, M. G. et al., 2017; & 

Anguita, D. et al., 2012, December). The use of 

segmented data is more suitable and enables faster 

classification process, especially for short activities 

(Nadi, R. A., & Zamil, M. G. A. 2019; Bulling, A. et 

al., 2014; Hammerla, N. Y. et al., 2016; Yala, N. et al., 

2015, September; Li, K. et al., 2019; & Banos, O. et al., 

2014). Data segmentation can be done by dividing the 

data stream into segments fixed size (Time-based 

windowing). This is the most used segmentation 

technique as it is easy to implement. However, this 

technique requires a careful choice of the segment 

length. A short segment may be insufficient for activity 

recognition, while a long segment may contain data 

belonging to more than one activity leading to poor 

classification accuracy. In the other hand there is 

another type for data segmentation called Sensor-based 
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windowing in which data is divided into windows of 

equal number of sensor events (Yala, N. et al., 2015, 

September). 

 

The process of human activity recognition can 

be divided into two stages. The first stage is feature 

extraction and used to reduce data dimensionality for 

raw or segmented data and the second is the 

classification stage. A preprocessing stage, before 

feature extraction, may be required for data filtering 

from noise ( Bruno, B. et al., 2014, August)  or data 

segmentation (Anguita, D. et al., 2012, December). 

 

The features extracted from raw data are 

diverse. However, they can be broadly classified into 

time and frequency domain features such as: First, time 

domain features: minimum, maximum (Sukor, A. A. et 

al., 2018, March; & Anguita, D. et al., 2013, April), 

mean (Voicu, R. A. et a2019; & Long, X. et al., 2009, 

September), standard deviation (Aguirre, P. L. et al., 

2015; Oniga, S., & Sütő, J. 2014, May; Anguita, D. et 

al., 2013, April; & Long, X. et al., 2009, September), 

median (Aguirre, P. L. et al., 2015; & Anguita, D. et al., 

2013, April), signal magnitude area (SMA) (Aguirre, P. 

L. et al., 2017; Anguita, D. et al., 2013, April; Khan, A. 

M. et al., 2008, August; Lee, M. W. et al., 2011; Khan, 

A. M. et al., 2010; & Krassnig, G. et al., 2010 March), 

tilt angle (Aguirre, P. L. et al., 2017; Anguita, D. et al., 

2012, December; Sukor, A. A. et al., 2018, March; 

Anguita, D. et al., 2013, April; Khan, A. M. et al., 

2008, August; Lee, M. W. et al., 2011; Khan, A. M. et 

al., 2010; & Krassnig, G. et al., 2010 March), average 

absolute difference, average resultant acceleration and 

histogram (Voicu, R. A. et al., 2019), skewness, 

kurtosis (Aguirre, P. L. et al., 2015), correlation 

between axes, energy and spectral entropy (Anguita, D. 

et al., 2013, April; & Krassnig, G. et al., 2010, March),  

coefficients of autoregressive model for 3-axis x, y and 

z (Aguirre, P. L. et al., 2017; Anguita, D. et al., 2013, 

April; Khan, A. M. et al., 2008, August; Lee, M. W. et 

al., 2011; Khan, A. M. et al., 2010; Khan, A. M.et al., 

2010, May) and tilt angle (Aguirre, P. L. et al., 2017; 

&Khan, A. M. et al., 2008, August). Second, frequency 

domain features : discrete Fourier transform and dc 

component (Aguirre, P. L. et al., 2015), frequency 

signal kurtosis (Anguita, D. et al., 2013, April;), and 

power spectral density (PSD) (Aguirre, P. L. et al., 

2015; & Nadi, R. A., & Zamil, M. G. A. 2019). 

 

The employment of large number of features is 

very important because each class has its own 

discriminating features that can be used to distinguish it 

from other classes. For example, standard deviation is 

used to distinguish between static and dynamic classes 

and Fast Fourier Transform can be used to distinguish 

between walking  and running (Oniga, S., & Sütő, J. 

2014, May). To detect the most dominant features and 

reduce the number of features extracted Principle 

component analysis (PCA) algorithm (Long, X. et al., 

2009, September). 

 

After feature extraction, the activity 

recognition is performed with the aid of a suitable 

classifier. In the literature, there are many  types of 

classifiers used in HAR such as neural networks 

(Voicu, R. A. et al., 2019; Sukor, A. A. et al., 2018, 

March; Khan, A. M. et al., 2008, August; & Lee, M. W. 

et al., 2011; Krassnig, G. et al., 2010, March; & Khan, 

A. M. et al., 2010, May), Support Vector Machine 

(SVM) (Aguirre, P. L. et al., 2017; Aguirre, P. L. et al., 

2015; Marinho, L. B. et al., 2016, December; Sukor, A. 

A. et al., 2018, March; Anguita, D. et al., 2013, April ; 

& He, Z. Y. et al., 2008, July), decision tree (Sukor, A. 

A. et al., 2018, March; & Krassnig, G. et al., 2010 

March), kernel discriminate analysis (Khan, A. M. et 

al., 2010, May), Linear discriminate analysis (Lee, M. 

W. et al., 2011; & Khan, A. M. et al., 2010), random 

forest (Aguirre, P. L. et al., 2015), Gaussian mixture 

model(GMM) (Aguirre, P. L. et al., 2015; & Bruno, B. 

et al., 2014, August), naïve Bayes classifier (Marinho, 

L. B. et al., 2016, December; & Long, X. et al., 2009, 

September), k-Nearest Neighbors (kNN) (Aguirre, P. L. 

et al., 2015; & Marinho, L. B. et al., 2016, December), 

k-means clustering and hidden Markov model (HMM) 

(Aguirre, P. L. et al., 2015) and minimal learning 

machine (MLM) (Marinho, L. B. et al., 2016, 

December). 

 

In this paper, a feed forward neural network 

(FFN), with one hidden layer, is used and a set of time 

domain features, namely the coefficients of an 

autoregressive model, tilt angle, signal magnitude area, 

Histogram  data (Voicu, R. A. et al., 2019), mean, 

standard deviation, kurtosis and skewness. The number 

of neurons in the hidden layer for the FFN, the order of 

AR model and number of histogram bins are selected 

according to the statistical t-test in order to achieve the 

best results.  Instead of using raw data only we apply 

data segmentation to two datasets WHARF and UCI-

HAR with segment length of 128, 256, and 512 samples 

and 50% overlap. 

 

Time domain and statistical features  

In this section, we review the features to be 

extracted from the segmented data. In both WHARF 

and UCI-HAR datasets, there are 3-axis data x, y and z 

for the accelerometer ax (i), ay (i) and az (i) and 

gyroscope gx (i), gy (i) and gz (i) where i=1,2,3,........., 

N, and N is the number of samples in the segment. The 

following features are used: 

 

Autoregressive (AR) model: Autoregressive model is 

an empirical model used to describe or predict time 

series data from past data records. The autoregressive 

model takes the following form for the sensor readings 

in the x-direction 

 

   ( )   ∑  ( )
 

   
   (   )   ( ),        (1) 
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where ax(n) is the signal at time n, ax(n − 1), 

...... , ax(n − p) are the values of the signal at past time 

lags where the maximum lag p denotes the order of the 

model. The coefficients a(k) are the model parameters 

to be estimated and used for predicting future signal 

values. The input e(n) denotes model residual or error 

which is zero-mean white noise sequence. For the 

purpose of the current work, the autorgeressive model 

(1) is applied to the segmented data in each of the x, y, 

and z directions, forming a total of 3p features. For 

model order 3, we have 9 features. 

 

Signal Magnitude Area (SMA): is a scalar feature 

used to distinguish between static and dynamic  

activities such as standing and walking (Aguirre, P. 

L. et al., 2017). It is calculated as 

 

    (
 

 
) ( ∑ |   ( )|  |   ( )|  |   ( )| 
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where N is the number of samples, and ax(i), ay(i) and 

az(i) are the acceleration in x, y and z directions, 

respectively. 

 

Tilt angle: is the angle between the z-axis and the 

gravitational vector g and is used to distinguish postures 

such as standing and lying (Aguirre, P. L. et al., 2017). 

It is expressed as 
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Where ||   ||  denotes the 2-norm of the whole 

accelerometer readings in the z direction az. 

 

Histogram: A histogram provides an empirical 

estimate of the probability density function (PDF) of a 

given random variable from a series of measurements. 

The range of measurements is first split into L disjoint 

bins. The number of measurements hi falling in bin i is 

normalized by the total number of measurements N to 

yield the histogram {h1, h 2, ....., hL}. As the histogram 

is applied to the data in x, y, and z directions, this 

constitutes a total of 3L features. We split the data into 

5 disjoint bins so we have 15 features. 

 

Mean: The mean describes the central tendency or the 

dc level of the data and is calculated as: 
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Standard deviation: describes the amount of variation 

around the mean and is calculated as: 
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Skewness: expresses the degree of (a) symmetry of the 

probability density function of the distribution 

generating the data  and is found as: 
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Kurtosis: the kurtosis denotes the degree of tailed-ness 

of the density function (Helwig, N. et al., 2015, May) 

and is expressed as:  
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                   (7) 

 

Several previous studies have considered these 

four statistics (mean, standard deviation, skewness and 

kurtosis), however, in other applications (Helwig, N. et 

al., 2015, May; & Chawathe, S. S. 2019, January). 

 

The proposed classifier 

The proposed classifier consists of three stages 

as shown in Fig 1. The first stage performs data 

segmentation. The aforementioned features are 

extracted from raw sensor data in the second stage and 

the classification task is done in the third stage using 

feedforward neural network (FNN) (Russell, S. J., & 

Norvig, P. 2010).  

 

In this work we use segmentation with fixed 

segment length and 50% overlap between segments as 

shown in Fig. 2. 

 

 
Figure 1: Block diagram of the proposed human activity recognition system. 
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Figure 2: Data Segmentation with segments of length 128 and 50% overlap. 

 

The structure of a typical FNN network 

consists of the input, one hidden, and the output layers. 

The input layer receives a set of ns (3p +3L+14) 

features where p is the order of the autoregressive 

model, L is the number of histogram bins, and ns is the 

number of sensors employed. So, in this work, we have 

a total of 38 features. Both the hidden and output layers 

consist of units called neurons employing a linear 

combination of the outputs of the previous layer 

followed by a nonlinearity function which is typically 

the sigmoid function defined as 

 

  
 

     
                                  (8) 

 

Where x is the linear combination sum and y is 

the nonlinear neuron output. While the output layer 

consists of m neurons, where m denotes the number of 

activity classes. 

 

The features presented to the neural networks 

must be normalized so that all features lie in the same 

range, e.g., (−1, 1). On the other hand, the outputs of 

the neurons in the output layer are real numbers and so 

are not directly suitable for classification. For this 

purpose, the output yi of each neuron is transformed 

using the following so-called softmax function 

 

   
   

∑     
   

                                                 (9) 

 

Where ci  is constrained in the interval (0, 1) 

and all ci, i = 1, 2, · · · , m sums to 1. ci  can therefore be 

interpreted as a probability and so the classification 

decision can be made as the class corresponding to the 

maximum ci. Training neural networks involves 

updating their weights until they achieve a minimum 

cost function. The default cost function is the mean 

square error (MSE) calculated as 

    
 

  
 
 

 
 ∑ ∑ (  ( )    ( ))  

   
  
                 (10) 

 

Where tk(i) is k-th target output and ck(i) is the 

k-th network output at the i-th training example, Nt  is 

the number of training examples presented to the 

network, and m is the number of classes. The training of 

FNN network is performed using the back-propagation 

algorithm. 

 

RESULTS AND DISCUSSION 
Datasets 

In this section, two benchmark HAR datasets, 

namely WHARF and UCI-HAR, are used to examine 

the performance of the proposed technique. The 

datasets differ according to (1) considered activity 

signals, (2) used sensor, (3) sensor position on human 

body and (4) experimental setting for recording activity 

signals. The following are brief of both datasets. 

 

WHARF 

Wearable Human Activity Recognition Folder 

(WHARF) dataset was prepared 

by Bruno et al., (2014, August). The dataset was 

collected by an ad-hoc tri-axial accelerometer sensor 

attached to right wrist of each of 17 participants; 11 

males, with age ranging from 19 to 81 years; and 6 

females, with ages between 56 and 85 years (Aguirre, P. 

L. et al., 2017). Experiments were taking place at each 

participant home in a supervised manner. The digital 

resolution of the sensor was 6 bits and sampling rate 

was 32 Hz. The dataset contains 12 activities, of which 

the following 7 activity classes are represented by more 

than 100 instances and will be considered in this paper 

for the reasonable training of the proposed model: 

Climb stairs (CS), Drinkg glass (DG), Getup bed (GB), 

Pour water (PW), Sitdown chair (SD), Standup chair 

(SU) and Walk (WK). Each activity class examples are 

contained in a separate folder and raw signals for each 

single activity are saved in one text file. 
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UCI–HAR 

A public dataset for activities of daily living 

have been published by Anguita et al., (2013, April). 

Participants were asked to follow some protocol to act 6 

activities using a waist-mounted smartphone. The 

activities are namely Laying (LY), Sitting (ST), 

Standing (SD), Walking (WK), Walking upstairs (WU) 

and Walking down (WD). A sampling rate of 50 Hz was 

used to collect the triaxial linear acceleration and 

angular velocity of the phone accelerometer and 

gyroscope sensors. Each participant was performing a 

sequence of activities in order. Hence, raw signals of all 

activities were recorded in one text file per participant. 

After parsing the files of raw signals, we can collect the 

samples of each activity in order to train our model. 

From each activity class, a number of 120 examples 

were randomly selected. The number of instances for 

each activity class is the same for both accelerometer 

and gyroscope experiments. In a previous published 

version of this dataset, only data for some extracted 

features of the activities were available. Hence, most 

studies in the literature considering this dataset 

employed features data rather than the raw signal data. 

 

Experimental Results 

In this section, the results of several 

experiments are presented. First, performance of 

proposed classification model, in terms of True Positive 

Rate (TPR) or the classifier recall, accuracy and 

confusion matrix, is shown for both datasets considered 

here. Also performance of proposed model is compared 

to previous studies for both datasets. Second, our ANN 

classifier is compared with four commonly used 

classifiers in literature, namely Support Vector 

Machines, Naive Bayes, and K-Nearest Neighbors. The 

average overall accuracy and standard deviation for all 

classifiers are reported. Finally, the results of proposed 

model are shown for activity classes in UCI–HAR 

dataset when combining features of both accelerometer 

and gyroscope sensors. Experiments were carried out 

using Matlab on a CPU i5, 2.6 GHz and 6GB RAM. In 

each experiment, 100 independent computer runs are 

performed. For the purpose of training the proposed 

ANN classifier, each dataset has been partitioned 

randomly into 85% for training and validation, and 15% 

for testing. 

 

For WHARF dataset, seven activity classes 

with number of examples greater than 100, namely 

Climb stairs, Drinkg glass, Getup bed, Pour water, 

Sitdown chair, Standup chair and Walk, are considered 

for data segmentation. For balanced training preferred 

for ANN or other classifiers, we deal with specific 

number of segments according to the segment length. 

 

Table 1: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity class in 

WHARF dataset segmented with segment length 128 with 50% overlap. The activities are Climb stairs (CS), Drinking 

glass (DG), Getup bed (GB), Pour water (PW), Sitdown chair (SD), Standup chair(SU) and Walk (WK). Rows are 

predicted classes while columns are true classes. 

 CS DG GB PW SD SU WK 

CS 153 3 10 2 5 7 57 

DG 1 195 1 30 6 5 0 

GB 9 5 141 10 31 35 6 

PW 0 21 4 205 5 3 0 

SD 5 8 28 10 132 49 5 

SU 7 6 25 11 42 138 10 

WK 50 0 7 0 6 6 170 

P .7 .8 .7 .8 .6 .6 .7 

R .6 .8 .6 .9 .6 .6 .7 

F .6 .8 .7 .8 .6 .6 .7 

 

Table 2: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity class in 

WHARF dataset segmented with segment length 256 with 50% overlap. Activities labels are the same as in Table 1. 

Rows are predicted classes while columns are true classes. 

 CS DG GB PW SD SU WK 

CS 36 0 3 0 1 0 8 

DG 0 46 0 2 0 0 0 

GB 1 0 37 1 4 4 1 

PW 0 3 0 44 1 0 0 

SD 1 0 4 1 33 8 0 

SU 1 0 3 0 8 36 1 

WK 9 0 2 0 0 0 38 

P .75 .96 .77 .92 .7 .73 .77 

R .75 .94 .75 .94 .7 .75 .79 

F .75 .95 .76 .93 .7 .74 .78 
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Table 3: Confusion matrix, Recall (R) and F measure for proposed model for each activity class in WHARF dataset for 

raw data. Activities labels are the same as in Table 1. Rows are predicted classes while columns are true classes. 

 CS DG GB PW SD SU WK 

CS 90 0 1 0 1 1 5 

DG 0 93 0 6 0 0 0 

GB 3 0 93 0 3 3 1 

PW 1 7 0 94 0 1 0 

SD 0 0 3 0 87 8 0 

SU 2 0 3 0 9 87 1 

WK 4 0 0 0 0 0 93 

P .91 .93 .93 .91 .88 .85 .95 

R .9 .93 .93 .94 .87 .87 .93 

F .9 .93 .93 .92 .87 .85 .93 

 

As segment length increases, the results 

increase as well. A segment length of 256 gives the best 

accuracy against 128 segment  length and raw data give 

the best accuracy for WHARF data set. 

 

Table 4: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR accelerometer dataset segmented with segment length 128 with 50% overlap. The activities are 

Laying (LY), Sitting (ST), Standing (SD), Walking (WK), Walking upstairs (WD) and Walking down (WU). Rows are 

predicted classes while columns are true classes. 

 LY ST SD WK WD WU 

LY 900 0 0 0 0 0 

ST 0 777 121 1 0 1 

SD 0 91 808 1 0 0 

WK 0 0 0 868 17 15 

WD 0 0 0 25 858 17 

WU  0 0 0 28 13 859 

P 1 .89 .87 .94 .96 .96 

R 1 .86 .89 .96 .95 .95 

F 1 .87 .87 .95 .95 .95 

 

Table 5: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR accelerometer dataset segmented with segment length 256 with 50% overlap. Activities labels are the 

same as in Table 4. Rows are predicted classes while columns are true classes. 

 LY ST SD WK WD WU 

LY 354 0 0 0 0 0 

ST 0 311 42 0 0 1 

SD 0 28 326 0 0 0 

WK 0 0 0 342 3 9 

WD 0 0 0 6 343 5 

WU 0 0 0 16 4 334 

P 1 .91 .88 .94 .98 .95 

R 1 .87 .92 .96 .96 .94 

F 1 .88 .89 .94 .96 .94 

 

Table 6: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR accelerometer dataset segmented with segment length 512 with 50% overlap. Activities labels are the 

same as in Table 4. Rows are predicted classes while columns are true classes. 

 LY ST SD WK WD WU 

LY 104 0 0 0 0 0 

ST 0 96 8 0 0 0 

SD 0 4 100 0 0 0 

WK 0 0 0 101 0 2 

WD 0 0 0 2 102 1 

WU 0 0 0 4 1 99 

P 1 .96 .92 .94 .99 .97 

R 1 .92 .96 .98 .97 .95 

F 1 .93 .93 .95 .98 .96 
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Table 7: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR accelerometer dataset for raw data. The activities are Laying (LY), Sitting (ST), Standing (SD), 

Walking (WK), Walking upstairs (WD) and Walking down (WU). Rows are predicted classes while columns are true 

classes. 

 LY ST SD WK WD WU 

LY 120 0 0 0 0 0 

ST 0 108 10 0 0 0 

SD 0 12 110 0 0 0 

WK 0 0 0 107 2 9 

WD 0 0 0 3 115 2 

WU 0 0 0 10 3 109 

P 1 .91 .9 .91 .95 .89 

R 1 .9 .91 .89 .95 .9 

F 1 .9 .9 .89 .95 .89 

 

It is noted that for the walking activity in UCI-

HAR accelerometer the recall 1 which means that it is 

detected correctly in all cases. As segment length 

increase the accuracy increase  and gives the best 

accuracy at segment length 512 which also gives more 

better accuracy than using raw data for  UCI-HAR 

Accelerometer but the difference in the recall for raw 

data and segmented data with segment length 512  is 

not large. 

 

 

Table 8: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR gyroscope dataset segmented with segment length 128 and 50% overlap. The activities are Laying 

(LY), Sitting (ST), Standing (SD), Walking (WK), Walking upstairs (WD) and Walking down (WU). Rows are predicted 

classes while columns are true classes. 

 LY ST SD WK WD WU 

LY 588 159 149 1 2 0 

ST 169 625 101 1 0 4 

SD 123 135 637 2 1 1 

WK 2 0 0 790 65 43 

WD 1 0 0 120 759 20 

WU 0 0 0 75 13 811 

P .66 .68 .71 .79 .90 .92 

R .65 .69 .7 .87 .84 .9 

F .65 .68 .7 .82 .86 .9 

 

 

Table 9: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR gyroscope dataset segmented with segment length 256 and 50% overlap. Activities labels are the 

same as in Table 8. Rows are predicted classes while columns are true classes. 

 LY ST SD WK WD WU 

LY 244 58 51 0 1 0 

ST 54 261 38 0 0 0 

SD 42 40 271 1 0 1 

WK 1 0 0 338 9 6 

WD 0 0 0 23 329 2 

WU 0 0 0 18 0 336 

P .72 .72 .75 .89 .97 .97 

R .68 .73 .76 .95 .92 .94 

F .69 .72 .75 .91 .94 .95 
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Table 10: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR gyroscope dataset segmented with segment length 512 and 50% overlap. Activities labels are the 

same as in Table 8. Rows are predicted classes while columns are true classes. 

 LY ST SD WK WD WU 

LY 77 17 10 0 0 0 

ST 16 80 8 0 0 0 

SD 8 9 87 0 0 0 

WK 0 0 0 103 1 0 

WD 0 0 0 0 104 0 

WU 0 0 0 0 0 104 

P .76 .75 .82 1 .99 1 

R .74 .76 .82 1 1 1 

F .74 .75 .82 1 .99 1 

 

 

Table 11: Confusion matrix, Recall (R), Precision (P) and F measure for proposed model for each activity 

class in UCI–HAR gyroscope for raw data. Activities labels are the same as in Table 8. Rows are predicted classes while 

columns are true classes. 

 LY ST SD WK WD WU 

LY 93 15 8 0 0 0 

ST 17 99 7 0 0 0 

SD 10 6 105 0 0 0 

WK 0 0 0 117 2 3 

WD 0 0 0 2 118 0 

WU 0 0 0 2 0 117 

P .8 .8 .86 .95 .98 .98 

R .77 .82 .87 .96 .98 .97 

F .78 .8 .86 .95 .98 .97 

 

As segment length increases, the accuracy 

increases achieves the best accuracy at segment length 

512 for the activity of walking and walking upstairs 

where the recall is 1. However, for the remaining 

activities the raw data gives a larger recall than the 

segmented data. 

 

Comparison with other classifiers 

In this section we will introduce a comparison 

between the proposed classifiers using Feedforward 

Neural Networks and some other classifiers as Support 

Vector Machine (SVM), naive Bayes, k-nearest 

neighbor (KNN) and Decision trees (DT).We compare 

from two point of view average accuracy and Training 

time for each algorithm. 

 

1- Accuracy 

We can see that  average accuracy increase as 

segment length increase for the three datasets, but the 

best average accuracy for  both WHARF and UCI-HAR 

gyroscope is obtained using raw data. For UCI-HAR 

accelerometer, the best average accuracy is obtained 

using the segmented data with segment length 512 with 

50% overlap. 

 

 

Table 12: Mean and standard deviation of accuracy (%) of proposed model versus other classifiers for segmented data 

with segment length 128 and 50% overlap. Average accuracy of artificial neural networks (ANN) is the best for all 

datasets. Acc and Gyro are UCI–HAR datasets for accelerometer and gyroscope, respectively. Other classifiers are 

support vector machines (SVM), Naive Bayes (NB), K-Nearest Neighbors (KNN) and  Decision Trees (DT). 

 ANN SVM NB KNN DT 

WHARF 68.03±3.32 63.14±.004 51.31±.0037 51.26±.003 54.39±.009 

Acc 93.9±1.11 90.8±.001 82.35±.0009 77.52±.0022 90.45±.0037 

Gyro 77.96±2.77 75.7±.0015 62.73±.0019 63.04±.0026 71.04±.0051 
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Figure 3: Mean accuracy for the proposed Artificial Neural Network (ANN) classifier vs. Support Vector Machine 

(SVM), Naive Bayes (NB), k-Nearest Neighbors (KNN) and Decision Trees (DT) for segment length 128 and 50% 

overlap. 

 

Table 13: Mean and standard deviation of accuracy (%) of proposed model versus other classifiers for segmented data 

with segment length 256 and 50% overlap. Average accuracy of artificial neural networks (ANN) is the best for all 

datasets. Acc and Gyro are UCI–HAR datasets for accelerometer and gyroscope, respectively. Other classifiers as 

described in Table 12. 

 ANN SVM NB KNN DT 

WHARF 80.11±5.22 74.14±.0104 67.34±.0085 66.81±.0097 62.82±.018 

Acc 94.45±1.36 90.62±.0019 84.21±.0021 80.15±.0032 89.08±.0059 

Gyro 83.75±2.01 80.74±.0031 72.23±.0064 70.05±.004 76.23±.0066 

 

 
Figure 4: Mean accuracy for proposed classifier vs. other classifiers for segment length 256 and 50% overlap and 

classifiers as described in Figure 3. 

 

Table 14: Mean and standard deviation of accuracy (%) of proposed model versus other classifiers for segmented data 

with segment length 512 and 50% overlap. Average accuracy of artificial neural networks (ANN) is the best for all 

datasets. Acc and Gyro are UCI–HAR datasets for accelerometer and gyroscope, respectively. Other classifiers as 

described in table 12. 

 ANN SVM NB KNN DT 

Acc 96.32±2.62 91.83±.0054 86±.0036 79.36±.0059 87.23±.0086 

Gyro 88.96±2.45 85.68±.005 77.61±.0075 71.94±.0073 80±.0106 

 

 
Figure 5: Mean accuracy for proposed classifier vs. other classifiers for segment length 512 and 50% overlap and 

classifiers as described in Figure 3. 
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Table 15: Mean and standard deviation of accuracy (%) of the proposed model versus other classifiers for raw data. 

Average accuracy of artificial neural networks (ANN) is the best for all datasets. Acc and Gyro are UCI–HAR datasets 

for accelerometer and gyroscope, respectively, as described in table 12. 

 ANN SVM NB KNN DT 

WHARF 90.6±2.7 88.6±.01 80.4±.01 80±.01 75.8±.02 

Acc 92.9±2.7 88.4±.004 83.7±.004 73±.004 84.3±.01 

Gyro 90±2 84.1±.003 73.2±.004 66.7±.01 79.5±.01 

 

 
Figure 6: Mean accuracy for proposed classifier vs. other classifiers for raw data and classifiers as described in Figure 3.  

 

 

 
Figure 7 : Average accuracy for proposed classifier Vs. other classifiers for the used datasets WHARF, UCI-HAR 

Accelerometer and UCI-HAR Gyroscope with segment lengths 128, 256, 512 and raw data. 

 

2- Training time 

Here we introduce the comparison of proposed 

classifier with other classifiers from training time point 

of view. Introduce which algorithm give the shortest 

training time for different segment lengths. 

 

 

 



 

Basma A. Atalaa et al;  East African Scholars J Eng Comput Sci; Vol-3, Iss- 7 (Jul, 2020):133-145 

© East African Scholars Publisher, Kenya   143 

 

Table 16: Training time for various classifiers for the datasets segmented with segment length 128 with 50% overlap. 

 #Examples NN  SVM  NB   KNN  DT  

WHARF 238 90.27 6.32*10^3 46.52 15.09 132..05 

Acc 900 344.59 4.6*10^3 58.57 99.19 278.22 

Gyro 900 314.19 4.8*10^3 58.89 113.4 291.98 

  

Table 17: Training time for various classifiers for the datasets segmented with segment length 256 with 50% overlap. 

 #Examples NN  SVM  NB   KNN  DT  

WHARF 48 41.12 263.16 41.02 7.75 18.75 

Acc 354 126.05 1.08*10^3 41.36 27.41 80.88 

Gyro 354 123.21 2.35*10^3 41.47 23.49 111.11 

 

 

Table 18: Training time for various classifiers for the datasets segmented with segment length 512 with 50% overlap. 

 #Examples NN  SVM  NB   KNN  DT  

Acc 104 52.65 317.95 35 8.16 21.6 

Gyro 104 48.5 1.07*10^3 35.7 8.58 23.25 

 

From Tables 16, 17 and 18, we can see that the 

training time for the proposed classifier NN is larger 

than that of NB, KNN and DT. However, the proposed 

classifier outperforms those classifiers in terms of 

recognition accuracy. Compared to SVM, the proposed 

classifier is superior both with regard to the training 

time and recognition accuracy. Therefore, it can be 

concluded that the proposed classifier is suitable in real 

world applications.  

 

The difference in training time between 

WHARF and UCI-HAR datasets is also acceptable as 

the number of examples for UCI-HAR dataset is more 

than in WHARF dataset. For the segments of length 

128, we have small training time and faster response 

compared to large segments. However, in Table 18 we 

see for segment length 512 that the training time is less 

than other training time and this can be explained as 

follows. In our work, we take the same number of 

examples for each activity so we work for the shortest 

activity and truncate the rest for large-length activities 

and this leads to reducing the number of training 

examples and as a result reducing the training time. 

 

We can see the difference in time for both 

UCI-HAR  Accelerometer and Gyroscope dataset  using 

Neural Network as training algorithm despite using the 

same number of examples for both. This difference in 

time results from using different number of neurons in 

hidden layer. After doing many experiments we found 

that the best number of neurons for UCI-HAR 

accelerometer is 90 neuron and, for UCI-HAR 

gyroscope, it is 75 neuron. As the number of neurons 

increase the complexity of neural network increase 

resulting in increasing the time of training the network. 

 

Conclusions and Future Work 

In this work, a simple classification model 

based on ANN has been proposed for human activity 

recognition (HAR) tasks. HAR becomes a very 

attractive field not only due to the wide range of 

applicability of machine learning tools, but also for 

important applications like rehabilitation and health 

monitoring. Two HAR datasets, WHARF and UCI–

HAR differing in the types of activity, are considered. 

The feature vector consists of several time-domain 

features such as AR model coefficients, histogram 

values, mean, standard deviations and few others which 

give best results when applied to ANN classifier.  

 

Performance of ANN was better than other 

classifiers in machine learning such 

as SVM, NB, KNN and DT. For WHARF, proposed 

system was trained for raw signals similar to some 

previous studies (Aguirre, P. L. et al., 2017; & Aguirre, 

P. L. R. 2018) and trained for segmented data with 

segment length 128 and 256 with 50% overlap. For 

UCI–HAR, proposed system was trained in two cases: 

one using raw signals and the second using segmented 

signals with 128 window length and 50% overlapping 

as suggested by the creators of this dataset(Anguita, D. 

et al., 2012, December), and also using segment length 

256 and 512 with 50% overlap. Average accuracy of the 

proposed system is the best so far for both examined 

datasets and the training time also is acceptable for it 

comparing with other classifiers accuracy. 
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