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Abstract: In this paper, we deal with the extinction of solution of the initial 

boundary value problem of a quasilinear parabolic equation  

in a bounded domain of . We prove that extinction of the solution. 

Keywords: Extinction; quasilinear parabolic equation; nonlinear source. 

Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 

author and source are credited. 

 

INTRODUCTION 
In this paper, we are interested in the nonnegative solutions for the singular nonlinear diffusion problem 

 

 

Where  is a bounded domain in  with appropriately smooth boundary  

and   satisfies the following conditions: 

 

 

  

This type of equations arise in biological and astrophysical context. In combustion theory, for instance, the 

function  represents the temperature; the term  represents the thermal diffusion and  

is a source. Equations (1.1) arises also in some models describing physical phenomenon. For example, when , 

equation (1.1) is the evolution p-Laplacian. Equations of this form are mathematical models occurring in studies of  non-

Newtonian fluid theory [3,4], non-Newtonian filtration theory [5] and the turbulent flow of a gas in porous medium [6]. 

When , the blow-up properties of the semilinear equation (1.1) has been investigated by many researchers. For 

, the main interest in the past twenty years lies in the regularities of weak solutions of the quasilinear parabolic 

equation (see [8-11]). 

 

In present paper, our interest is to investigate the extinction of the nonnegative solution  in (1.1), i.e. there 

exists a finite time , such that the solution is nontrivial for , but  for all 

. In this case,  is called the extinction time. The first result on extinction is due to 
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Kalashnikov in 1974 (see [1]). For homogeneous Dirichlet boundary value problem of semilinear heat equation as 

follows: 

 

 

 

The most complete conclusions were obtained in [2]: A nontrivial solution of (1.2) vanishes in finite time if and 

only if  (i.e. strong absorption will cause extinction in finite time). More extinction properties of (1.2) have 

also been considered extensively by several authors (e.g. [7, 12] and the references therein). 

 

In [2], Gu also gave a simple statement of the necessary and sufficient conditions of extinction of the solution to 

the following problem: 

 

 

 

With . He proved that if  or  the solutions of the problem vanish in finite time, but 

if  and , there is non-extinction. In the absence of absorption (i.e. ), Dibenedetto [13] and Yuan et al. 

[14] proved that the necessary and sufficient conditions for the extinction to occur is . 

 
In [15], Li established conditions of extinction of the solution to the following porous medium problem: 

 

with , . Where  is an open bounded domain with smooth boundary? They showed that 

if , the solution with small initial data vanishes in finite time, and if , the maximal solution is positive for 

all . If , then first eigenvalue of the Dirichlet problem plays a role. 

 

Roughly speaking, for the problems (1.2) and (1.3), there is a comparison between the diffusion term and the 

absorption term, and fast diffusion or strong absorption will lead any bounded nonnegative solution to zero in finite time. 

But in (1.1) and (1.4), the nonlinear source  is physically called the ``hot source", while in (1.2) and (1.3), the 

source  is called the ``cool source"; the different sources have completely different influences on the properties of 

solutions (we refer the reader to [13, 15, 16]). For problem (1.1), with a ``hot source", it has been shown that the solution 

blows up in finite time for sufficiently large initial data (see [17]). In this paper we will show that the solution of (1.1) 

vanishes in finite time for sufficiently small initial data. 

 

It is well known that Eq. (1.1) is degenerate if  or singular if , since the modulus of ellipticity 

is degenerate ( ) or blows up ( ) at points where , and therefore there is no classical solution in 

general. For this, a nonnegative weak solution for problem (1.1) is defined as follows. 

 

For convenience, define . Denote  and  for  by 

 

 

 

Definition 1.1.  A nonnegative function  is called a weak solution of problem (1.1), if and only if 

  and there holds 
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And 

 

Where the text function  

 

Remark 1.2. To define weak solutions for the problem with arbitrary nonnegative function 

 as its boundary value, it suffices to require instead of

. Furthermore, because of the denseness of  in , 

one can assert that the above equality holds for any . 

 

Similarly, to define a subsolution (resp., supersolution) , we need only demand 

 (resp.,  in ,  (resp., ) on , and equality in 

(1.4) is replaced by  (resp., ) for every . 

 

The rest of the paper is organized as follows. In Section 2, we will give some preliminary lemmas. We will 
prove extinction results in Section 3. 

 

Preliminary 

Before studying our problem, we will give some lemmas, which will be useful tools in our later proofs. First, we 

establish the comparison principle; we begin with a simple lemma which provides the necessary algebraic inequality.  

 

Lemma 2.1. For all ,there holds 

 

Where  and  are positive constants depending only on . 

 
For the detail of this lemma, we refer the reader to Lemma 4.10 in [17] and Lemma 2.1 in [18]. Now, we prove 

the following comparison lemma: 

 

Lemma 2.2.  Suppose that ,  are a subsolution and a supersolution of (1.1) respectively, then 

 a.e. in . 

 

Proof. For small , set 

 

then  is a piecewise differential function. 

 

Letting , it is easy to verify that  is an admissible function in Definition 

1.1. According to (1.5) in Definition 1.1, we have 

 

And 

 

Let , and , then by (2.1) and (2.2), we obtain 
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Dividing (2.3) by  and integrating  over , we obtains 

 

 

 

Let , by the properties of Steklov's averages (see [2,11]) and simple calculations, we get 

 

 

Now, we deal with the terms in (2.5). Firstly, define 

 

 

Since  in ,  in , and , we have 

 

 

 

And 

 

 

Secondly, for , by Lemma 2.1, we have 

 

 

Finally, we have , and a.e.in ,  increasing and tends to 

 as . 

 

Hence, we may let  in (2.5) to obtain 

 

 

By Gronwall's inequality, we obtain , i.e.  a.e. in . The proof is complete.  

 

The first eigenvalue  of the following problem plays a crucial role: 
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Next we will introduce the following lemma on the properties of the first eigenvalue  and the corresponding 

eigenfunction . 

 

Lemma 2.3. There exists a positive constant  with the following properties: 

(i) For any , the eigenvalue function (2.6) has only the trivial solution . 

(ii) There exists a positive solution  of (2.6) if and only if . 

(iii) The collection consisting of all solutions of (2.6) with  is a one-dimensional vector space. 

(iv) If  and  are bounded domains with smooth boundary satisfying , then 

. 

(v) Let  be a sequence of bounded domains with smooth boundaries such that  and 

, then . 

 

This lemma follows from Lemmas 2.1, 2.2 in [19] and Lemma 1.1 in [17]. 

 

The properties of the first eigenvalue  and the corresponding eigenfunction  of the eigenvalue problem 

 

 

Are well known (see [20]). Moreover, we can define  using the “Rayleigh quotient”: 

 

 

We will give a similar quotient for the first eigenvalue  of (2.6) as follows. 

 

Extinction of the solution 

In this section, we consider the extinction of the solution to problem (1.1). 

 

Theorem 3.1. Let  be a weak solution of (1.1), then for sufficiently small initial data, there exists a finite time  such 

that  for all . 

 

Proof. Multiplying the first equation of (1.1) by , , and integrating over , we obtain 

 

 

By Lemma 2.2, if  in , for sufficiently small ,  is the positive first eigenfunction of 

(2.6), and , it can be easily verified that  is a supersolution of (1.1); then, we have 

 for all . From this, (3.1) can be rewritten as 

 

 

Then we have 

 

By integration, we have 

 

 

To which the above argument can be applied. The proof of Theorem 3.1 is complete.  
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