Cross Current International Journal of Agriculture and Veterinary Sciences

Abbreviated Key Title: Cross Current Int J Agri Vet Sci ISSN: 2663-2454 (Print) & Open Access DOI : 10.36344/ccijavs.2019.v01i03.003

Volume-1 | Issue-3 | Jun-Jul 2019 |

Research Article

ACCESS

Morphometrics and Meristic of Oreochromis Niloticus, Sarotherdon Galilaeus and Coptodon Zilli (Cichlidae) from Kosti, Sudan

Huda Ahmed Hassan & Zuheir N Mahmoud^{*}

Department of Zoology, Faculty of Science, University of Khartoum, Al-Gamaa Ave, Al Khurtum 11111, Sudan

*Corresponding author: Zuheir N Mahmoud Received: 09.06.2019 Accepted: 19.07.2019 Published: 30.07.2019

Abstract: Discriminant analysis using 19 morphometric measurements provided good separation between Oreochromis niloticus, Sarotherdon galilaeus and Coptodon zilli from Kosti area. The analysis selected lachrymal depth, head width, caudal peduncle depth, prepectoral distance and premaxillary pedical length as significant discriminant measures. Wilks lambda test indicated that the group centroids were extremely significantly different in functions1and 2, and clearly separated the three spp. Out of 12 meristic counts, the dorsal fin spine, dorsal fin rays, lateral scale, transverse line scale, anal and pectoral soft rays gave up to 80% correct separation.

Keywords: Morphometrics, meristic discrimination, tilapias Kosti, Sudan.

INTRODUCTION

Tilapia is the common name for about 77 Cichlid fish species in tropical Africa inhabiting a variety of freshwater habitats. They have been of major importance in commercial and artisan fishery and are gaining importance in aquaculture [1]. Thus their characterization is necessary for aquaculture.

Fish systematic relied mainly on morphology in placing different species into their proper genera [2]. Recent classification based on molecular approaches is only confirmatory [3]. The classification of Cichlids based on brooding habits [4] and colour patterns [5] is very strong discriminant tool. Early taxonomic work on freshwater of the Sudan was based on description notes and ratio indices [6, 7]. Morphometric was used by El Sayed [8] on *Eutropus niloticus*; Idris and Mahmoud [9] on *Labeo niloticus*; Saborido-Rey and Nedreaa [10] on the deeper red fish *Sebastes mentella* and Silva [11] on *Sardina bilchardus* for description and characterization.

The study aimed to utilize morphometric measurements and meristic counts to characterize *Oreochromis niloticus*, *Sarotherdon galilaeus* and *Coptodon zilli* from Kosti area (White Nile).

MATERIAL AND METHODS

Oreochromis niloticus, S. galilaeus and *C. zilli* used in this study were identified following Abu Gideiri [6] and Bailey [7]. Live specimens used in meristic counts (Table-1) and morphometric measurements (Table-2) were randomly collected from the commercial fisheries from Kosti.

Table-1: Description of meristic counts and their abbreviations

Description	Code
Number of dorsal fin spines.	DFS
Number of dorsal fin rays.	DFR
Longitudinal line scale: No. of scales on upper lateral line plus those on the lower lateral line.	LLS
Transverse line scales: No. of scale starting from the dorsal fin origin towards the upper lateral line divide by No. of scales starting from the anal fin origin to the upper lateral line.	TLS
Number of anal fin spines.	AFS
Number of anal fin rays.	AFR

http://crosscurrentpublisher.com/ccijavs/

Copyright @ 2019: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non commercial use (Non Commercial, or CC-BY-NC) provided the original author and source are credited.

Number of pectoral fin rays.	PeFR
Number of scales on the check.	CS
Lateral line scale: No. of scales on the upper lateral line divided by those on the lower lateral line.	LAT scale
Number of pelvic fin spines	PFS
Number of pelvic fin rays.	PFR
Number of scales on the pelvic fin.	PFS

The posterior part of fins was examined carefully for the any thin small fin rays.

Morphometric measurements were taken from each fish using a measuring board, a tape and a verneir caliper. Measurements (Table-2) followed Barel *et al.*, [12]; Mahmoud and Hassan [13].

Table-2: Morphometric measurements

Description	Code						
Total Length: the distance from the rostral tip of the upper jaw to the tip of the dorsal lobe of the caudal fin.	TL						
Standard Length: from the nostral lip of the upper jaw to the midpoint of the origin of the caudal fin.							
Head Length: from the rostral lip of the upper jaw to the most posterior point of the gill cover margin.	HL						
Eye diameter: maximum eye length from the most anterior point to the most posterior point of the orbit.	ED						
Head width: with the opercula in a normally a ducted position.	HW						
Snout Length: from the rostral tip of the upper jaw to the nostral	SNL						
point of the bony border of the orbit.							
Premaxillary Pedical Length: from the nostril tip of the upper jaw to the tip of the ascending process of premaxilla.	PPL						
Caudal peduncle length: distance between the vertical line through the caudal point of the anal fin insertion and that through	CPL						
the caudal border of the hypurals.							
Anal fin base length: distance between the most rostral and the most caudal point to the anal fin base.	AFBL						
Lachrymal depth: from the rostral corner of the bony orbit to the rostral corner of the lachrymal.	LAD						
Cheek depth: from the ventral point of the bony margin of the orbit to the dorsal corner of the lower jaw.	CD						
Caudal peduncle depth: minimum depth of caudal peduncle.	CPD						
Body Depth : maximum depth of the body in front of the pelvic fin, starting from the dorsal fin base in a vertical plain	BD						
Inter Orbital Width (IOW): minimum width of the dorsal margin of the bony orbits.	IOW						
Prepectoral distance: from the rostral tip of the upper jaw to the most rostral point of the pectoral fin base.	PPD						
Preanal distance: from the rostral tip of the upper jaw to the most rostral point of the anal fine base.	PAD						
Predorsal distance: from the rostral tip of the upper jaw to the most rostral point of the dorsal fin base.	PDD						
Prepelvic distance: from the rostral tip of the upper jaw to the most rostral point of the pelvic fin base.	PPD						
Dorsal fin base: distance between the most rostral to the most caudal point of the dorsal fin base.	DFB						

Discriminant analysis and Wilks lambda test were used to quantify and compare the validity of 19 morphometric measurements and 12 meristic measurements in separation between *O. niloticus*, *S. galilaeus* and *C. zilli* from Kosti area

Results

Discriminant analysis using 19 morphometric measurements provided good separation between *Tilapia* spp. from Kosti area (Fig-1).

Fig-1: Scatter plot of Canonical discriminant function of 19 morphometric characters of tilapia species

This separation was based on Canonical Discriminant Functions (CDF) and Standardized Canonical Discriminant Functions (SCDF) that enabled calculation of the variable variance and consequently compare directly the relative contribution of each variable (morphometric or meristic character) into each factor (Function 1 and 2) Table-1. The p-value of Wilks Lambda test (Table-1) indicated extremely highly significant (p=0.000) value for function 1 and highly significant (p=0.005) value for function 2.

Factor 1 explains 56.1% of the total variance in the 19 morphometric measurement, leaving only 43.9% to be explained by factor 2. The most influential morphometric character in factor 1 were LAD, CHD, HW, CPD, SNL, HL, PRP, W, ED, AFB, and PAD, while in factors 2 were PRD, PP, BD, SL, IOW, DFB, PRV. Factor 1 was useful in separating *C. zilli* from *O. niloticus* and *S. galilaeus*, while factor 2 was better in separating *O. niloticus* from *S. galilaeus* and *C. zilli*.

Table-1: CDF and SCDF analysis of O. niloticus from S. galilaeus and C. zili												
				19 – ma	orphon	netri	c	L	Loading			
Factor		0	DF			SDF			Function			
		1	2		1		2		1	2		
LAD	20	6.145	1.2	45	0.77	75	0.037		0.509*	0.188		
CHD	4	.453	14.4	113	0.20)2	0.653		0.413*	0.080		
HW	-7	0.611	5.2	72	-0.8	36	0.062		-0.308*	* 0.002		
CPD	5	5.219	-16.	328	0.32	25	-1.016		0.203*	-0.189		
SNL	1	.825	-8.0)73	0.09	92	-0.407		0.178*	-0.034		
HL	54	4.495	-34.	734	0.56	59	-0.363		0.129*	0.092		
PRP	5	5.764	-44.0	624	0.09	91	-0.703		-0.121*	* -0.014		
TL	-().308	0.4	47	-0.0	94	0.360		-0.107*	* 0.016		
AFB	-7	7.264	5.1	12	-0.4	16	0.293		0.084*	0.039		
PAD	2	.911	5.0	00 0.08		5.000 0.084 0.144		-0.074*	• -0.023			
ED	0	.936	0.4	18 0.0		0.049 0.022			0.021*	0.010		
PRD	-3	9.127	67.4	199	9 -0.45		-0.458		0.790		-0.196	0.340*
PPL	3	.933	19.7	709	0.147		0.147		0.738		0.219	0.324*
BD	1	.189	-23.	989	0.023		0.023 -0.470		0.005	-0.167*		
SL	14	4.917	17 17.2		0.25	51	0.290		-0.060	0.150*		
CPL	-1.869		CPL -1		9.6	14	-0.1	12	0.575		0.110	0.129*
IOW	IOW -1		1.4	54	-0.0	89	0.066		-0.038	-0.126*		
DFB	34	4.506	-51.	896	-0.4	97	-0.747		0.253	-0.112*		
PRV	-6	5.048	23.1	43	-0.0	94	0.360		-0.001	-0.102*		
		Signific	cance of	function	n 1 and	func	tion 2 based on	Wilks lar	mbda			
Function	on		lambda	Chi-S			Df		1	Significance		
1		0.1	18	81.0		38			0.000			
2		.3	73	37.4	174		18			0.005		

Table-1: CDF and SCDF	analysis of O.	niloticus from S.	galilaeus and C. zilli
Tuble II obl und bobl	under you of or or		

This discrimination was based on differences in signs (+ or -) shown in Table-2.

Table-2: Canonical discriminant function evaluated at group means (Group Centroids) used to different Tilapia species

Spacing	F	unctions
Species	1	2
Oreochromis niloticus	- 1.187	0.867
Sarotherodon galilaeus	- 0.366	-2.213
Coptodon zilli	2.114	0.440

Classification based on the 19 morphometric showed 60.9%, 50% and 60% correct classification for *O. niloticus, S. galilaeus* and *C. zilli*, respectively at an

average of 58% (Table-3). The table showed that 95.8% of grouped and 58.0% of cross-validated cases was correctly classified.

 Table-3: Leave-one-out cross validation for O. niloticus, S. galilaeus and C. zilli by discriminant analysis using 19 morphometric characters

morphometric characters										
Aspect		Species	Predicted gr	Total						
			O. niloticus	S. galilaeus	C. zilli					
		O. niloticus	22	0.0	1	23				
	Count	S. galilaeus	0.0	12	0.0	12				
Original		C. zilli	0.0	0.0	15	15				
	%	O. niloticus	95,7	0.0	4.3	100				
		S. galilaeus	0.0	100	0.0	100				
		C. zilli	0.0	0.0	100	100				
		O. niloticus	14	4	5	23				
Cross- validated	Count	S. galilaeus	4	6	2	12				
		C. zilli	3	3	9	15				
		O. niloticus	60.9	17.4	21.7	100				
	%	S. galilaeus	33.3	50	16.7	100				
		C. zilli	20	20	60	100				

Meristic Counts

Wilks lambda test (p=0.000) indicated that the group centroids were extremely significantly different in function1and resulted in clear separation of O.

niloticus from the *S. galilaes* and *C. zilli* (Table-4). With respect to Function 2 its value p=0.03 significantly separated *S. galilaeus* group from the other two species.

Species	Function			
	1	2		
Oreochromis niloticus	1.882	-0.302		
Sarotherodon galilaeus	-0.046	0.978		
Coptodon zilli	-2.849	-0.319		

Table-4: Group Centroids of *Tilapia* spp from Kosti, separated by Canonical Discriminant Function The CDF and SCDF analysis of the 9 meristic counts (Table-5) showed that 93.5% and 6.5% of the total variance were explained by factor 1 and factor 2, respectively. With 4 meristic counts gave 100%, 75% and 73.3% correct classification for *O. niloticus*, *S. galilaeus* and *T. zilli*, respectively with an average value of 80%

Table-5:	CDF and S	SCDF	from dis	scriminant	analysis (of O. n	iloticus, S	. galil	aeus and	<i>C. zilli</i> ir	n Kosti usi	ng meris	tic counts
			4.0									-	

		12 – meris	nt	4					
Factor		DF	S	CDF	CDF			SCDF	Loading
	1	2	1	2	1	2	1	2	
DFS	2.82	-0.24	1.01	-0.09	2.63	-0.47	0.94	-0.10	0.85*
DFR	0.53	0.99	0.22	0.41	0.64	0.56	0.23	0.41	0.31*
LLS	-0.07	-0.19	-0.16	-0.44	-0.06	20	-0.1	3 -0.47	0.29*
TLS	0.59	1.38	0.20	0.47	0.40	1.98	0.14	0.53	-0.28*
AFR	0.99	2.49	0.39	0.98					0.3
PeFR	0.43	-1.76	0.13	-0.54					0.17
CS	0.18	-0.10	0.15	-0.08					0.04
LAT scale	-13.34	8.94	-0.41	0.27					-0.04
PFS	0.16	-0.15	0.10	-0.09					0.06
		Significa	nce of f	function 1 a	nd 2 based	on Will	ks lam	ıbda	
Function	Function Wilks lambda		nbda	Chi-square		Df		Significant	
1		0.142	:	86.816		12 0.0		0.000	
2		0.757		12.407		5	(0.03	

The influential meristic counts in factor 1 were DFS, DFR, LLS and TLS, and in factor 2 those were PeFR and AFR were (Figs 2 and 3).

Fig-2: Scatter plot of Canonical discriminant function of 9 meristic counts on *Tilapia* spp

Re-classification based on 12 meristic counts selected 9 counts which showed 100%, 83.3% and 80% correct classification for *O. niloticus*, *S. galilaeus* and

Fig-3: Scatter plot of CDF of 4 meristic counts on tilapia spp

C. zilli (Table-6). The table showed that 88% of grouped and 76% of cross-validated cases was correctly classified.

Aspect		Species	Predicted group	Predicted group Membership					
			O. niloticus		C. zilli				
		O. niloticus	22	1	0.0	23			
	Count	S. galilaeus	2	10	0.0	12			
Original		C. zilli	0.0	3	12	15			
		O. niloticus	95.7	4.3	0.0	100			
	%	S. galilaeus	16.7	83.3	0.0	100			
		C. zilli	0.0	20	80	100			
		O. niloticus	22	1	0.0	23			
Cross-	Count	S. galilaeus	3	6	3	12			
validated		C. zilli	0,0	5	10	15			
		O. niloticus	95.7	4.3	0.0	100			
	%	S. galilaeus	25	50	25	100			
		C. zilli	00	33.3	66.7	100			

 Table-6: Leave-one-out cross validation for O. niloticus, S. galilaeus and C. zilli by discriminant analysis using 9 meristic counts

Re-classification based on 12 meristic counts selected 6 counts which showed 100%, 75% and 73.3% correct classification for *O. niloticus*, *S. galilaeus* and

C. zilli, respectively. The table showed that 86% of grouped and 80% of cross-validated cases was correctly classified.

 Table-7: Leave-one-out cross validation for O. niloticus, S. galilaeus and C. zilli by discriminant analysis using 6 meristic counts

Aspect		Species	Predicted gr	hip	Total		
			O. niloticus	S. galilaeus	C. zilli		
		O. niloticus	23	0.0	0.0	23	
Original	Count	S. galilaeus	3	9	0.0	12	
		C. zilli	0.0	4	11	15	
		O. niloticus	100	0.0	0.0	100	
	%	%	S. galilaeus	25	75	0.0	100
		C. zilli	0.0	26.7	73.3	100	
		O. niloticus	23	0.0	0.0	23	
Cross- validated	Count	S. galilaeus	3	7	2	12	
		C. zilli	0,0	5	10	15	
		O. niloticus	100	0.0	0.0	100	
	%	S. galilaeus	25	58.3	16.7	100	
		C. zilli	0.0	33.3	66.7	100	

DISCUSSIONS

The morphological characters of O. niloticus, S. galilaeus and C. zilli collected from Kosti (White Nile), showed typical characteristics to those reported by Abu Gideiri [6] and Bailey [7]. Trewavas [4] based her Cichlid classification on variation on dentition, bony structures and general body morphology. Due to characters overlap and inter population variation and small differences among species; Mwanja et al., [3] are of the opinion that RAPD markers are superior in species identification. The current data based on 19 morphometric measurements and 12 meristic counts was subject to discriminant analysis to outline parameters that are truly important in separating the groups in each location and each species from the different locations. Discriminant analysis applied to samples of the three species successfully separated them based on 5 morphometric characters (LAD, HW, CPD, RDD and PPD). The present work confirmed the validity of the analysis applied by Murta [14] on Trachuvus irachurus; Pinheiro et al., [15] on Solea lascaris; Silva [11] on S. bilchardus; Saborido and

Nedreaas [10] on *Sebastes mentella*; Vidalis [16] on *Spicara smaris* and Pollar *et al.*, [17] on *Tor tambroides*. El-Serafy *et al.*, [18] morphometric data showed striking similarities and overlapping among tilapia spp., making it impossible to differentiate those species on basis of morphometrics. El-Serafy *et al.*, [18] found that meristic counts are more precise in differentiating *O. niloticus*, *O. aureus*, *S. galilaeus* and *T. zilli* from each other. They reported that the lateral line scales differed significantly between these four spp., while the number of rays in the dorsal and anal fins differed significantly (p<0.05) between *S. galilaeus* and *T. zilli*.

Gad Kareem [19] compared morphometric characters of *O. niloticus* from Sinnar and Al Sabloga, but made no effort to discriminate these measurements to pinpoint the appropriate characters to be measured. Salih [20] studied the taxonomy of *O. niloticus, S. galilaeus* and *C. zilli* from Khartoum area using16 morphometric and 4 meristic characters in addition to molecular characters. Her analysis of morphometric

data was based on ratio indices and the meristic counts were given as descriptive data and no discriminant and canonical analysis data was provided. Therefore, the comparison between her findings and the current work is only possible through classical description.

With respect to species the separating 4 characters were valid (PPD, BD, TL and PAD) for *O. niloticus*; 4 (TL, BD, CPL and SL) for *S. galilaeus* and 10 (PPD, BD, TL, PAD, DFS, DFR, LLS, TRA scale, AFR and PeFR) for *C. zilli*.

The discriminant characters (DFS, DFR, LLS, TRA scale, AFR and PeFR) selected by canonical discriminant analysis gave good separation accounting up to 80% classification.

These findings are in agreement with Bailey [21] on flat fish populations; Saborido *et al.*, [10] on *S. mentella* and Palma et *al.*, [22] on Diplodus sargus, *Diplodus punntazo* and *Lithognathus mornurus* who found discriminant analysis a successful tool to discriminate fish species and/or populations.

According to Mwanja *et al.*, [3]; Williams *et al.*, [23, 24] any discrepancy in morphometric measurements and meristic counts suggest application of molecular techniques like DNA fingerprinting [25] or RAPD [26].

The description of these similarity coefficients is not simple, especially when more than one character is involved in the same cluster. Thus, *O. niloticus* and *S. galilaeus* are found to have a similarity coefficient of 82.6%, whereas it is 70% between *O. niloticus* and *C. zilli* and is 66.67% between *S. galilaeus* and *C. zilli*. The genetic similarity between *O. niloticus* and *S. galilaeus* was higher compared with that between *O. niloticus* and *C. zilli* showed low similarity compared with that of *O. niloticus*.

REFERENCES

- Fessehaye, Y. (2006). Natural mating in Nile tilapia (Oreochromis niloticus L.): implications for reproductive success, inbreeding and cannibalism. Wageningen: UR. 150.
- Bishai, H. M., & Abu-Gideiri, Y. B. (1967). Studies on the biology of genus Synodontis at Khartoum. IV. Classification and distribution. *Rev. Zool. Bot. Afr*, 75, 17-30.
- Mwanja, W., Booton, G. C., Kaufman, L., Chandler, M., Fuerst, P., Donaldson, E., & MacKinlay, D. (1996). Population and stock characterization of Lake Victoria. Tilapine fishes based on RAPD markers. In Aqyuaculture Biotechnology Symposium Prodeedings of the International Congress on the Biology of Fishes (ed, by EM Donaldson & DD Mackinlay), 115-124.
- 4. Trewavas, E. (1982). Tilapias taxonomy and speciation. 3-13: in the biology and culture of

Tilapias. R. S., Pullin, V., & Lowe- Mc Connel R. H., (eds.) ICLARM conference proceedings 7, 432.

- Streelman, J. T., Albertson, R. C., & Kocher, T. D. (2003). Genome mapping of the orange blotch colour pattern in cichlid fishes. *Molecular Ecology*, 12(9), 2465-2471.
- 6. Abu-Gideiri, Y. B. (1984). Fishes of the Sudan, Khartoum, University Press, Democratic Republic of Sudan, 122.
- 7. Bailey, R. G. (1994). Guide to the fishes of the River Nile in the Republic of the Sudan. *Journal of Natural History*, 28(4), 937-970.
- El Sayed, B. B. (1987). Studies on morphometric and meristic of length-weight relationship in *Eutropius niloticus*. B. Sc. Dissertation, Department of Zoology, Faculty of science, University of Khartoum.
- 9. Idris, M. A., & Mahmoud, Z. N. (2001). Studies on morphometric measurements and meristic counts on Labeo niloticus (Forskal, 1775). *Sudan Journal of Natural Sciences (Sudan)*, 1:90-108.
- 10. Saborido-Rey, F., & Nedreaas, K. H. (2000). Geographic variation of Sebastes mentella in the Northeast Arctic derived from a morphometric approach. *ICES Journal of Marine Science*, 57(4), 965-975.
- 11. Silva, A. (2003). Morphometric variation among sardine (Sardina pilchardus) populations from the northeastern Atlantic and the western Mediterranean. *ICES Journal of Marine Science*, 60(6), 1352-1360.
- 12. Witte, F., Barel, C. D. N., Witte-Maas, E. L., & VAN OIJEN, M. J. P. (1976). An introduction to the taxonomy and morphology of the haplochromine Cichlidae from Lake Victoria. *Netherlands journal of zoology*, 27(4), 333-380.
- 13. Mahmoud, Z. N., & Hassan, H. A. (2019). Discriminant analysis as a tool for characterization of Oreochromis niloticus (Chiclidae). Submitted for publication to: *Cross Current International Journal of Agriculture and Veterinary Sciences*.
- 14. Murta, A. G. (2000). Morphological variation of horse mackerel (Trachurus trachurus) in the Iberian and North African Atlantic: implications for stock identification. *ICES Journal of Marine Science*, *57*(4), 1240-1248.
- 15. Pinheiro, A., Teixeira, C. M., Rego, A. L., Marques, J. F., & Cabral, H. N. (2005). Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast. *Fisheries research*, 73(1-2), 67-78.
- Vidalis, K., Markakis, G., & Tsimenides, N. (1997). Discrimination between populations of picarel (Spicara smaris L., 1758) in the Aegean Sea, using multivariate analysis of phenetic characters. *Fisheries research*, 30(3), 191-197.
- Pollar, M., Jaroensutasinee, M., & Jaroensutasinee, K. (2007). Morphometric analysis of Tor tambroides by stepwise discriminant and neural

network analysis. *World Acad Sci Eng Technol*, 33, 16-20.

- 18. El-Serafy, S. S., Abdel-Hameid, N. A. H., Awwad, M. H., & Azab, M. S. (2007). DNA riboprinting analysis of Tilapia species and their hybrids using restriction fragment length polymorphisms of the small subunit ribosomal DNA. *Aquaculture research*, *38*(3), 295-303.
- Gad Kareem, Suzan, E. Y. (2000). Morphometric measurements and Meristic counts studies on *Oreochromis niloticus* from three localities. B. Sc. (Honours) Dissertation, Department of Zoology, Faculty of Science, University of Khartoum.
- Salih, M. M. (2010). On Taxonomic Studies of three Tilapiine genera: *Oreochromis, Sarotherdon, Tilapia* (Cichlidae) based on morphometric traits, chromosome number and DNA molecular pattern. Ph. D. Thesis, Department of Zoology, Faculty of Science, University of Khartoum.
- 21. Bailey, K. M. (1997). Structural dynamics and ecology of flatfish populations. *Journal of Sea Research*, *37*(3-4), 269-280.

- 22. Palma, J., & Andrade, J. P. (2002). Morphological study of Diplodus sargus, Diplodus puntazzo, and Lithognathus mormyrus (Sparidae) in the Eastern Atlantic and Mediterranean Sea. *Fisheries Research*, *57*(1), 1-8.
- 23. Williams, J. G., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. *Nucleic acids research*, *18*(22), 6531-6535.
- 24. Williams, J. G., Reiter, R. S., Young, R. M., & Scolnik, P. A. (1993). Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. *Nucleic acids research*, 21(11), 2697-2702.
- Harris, A. S., Bieger, S., Doyle, R. W., & Wright, J. M. (1991). DNA fingerprinting of tilapia, Oreochromis niloticus, and its application to aquaculture genetics. *Aquaculture*, 92, 157-163.
- Hassanien, H. A., Elnady, M., Obeida, A., & Itriby, H. (2004). Genetic diversity of Nile tilapia populations revealed by randomly amplified polymorphic DNA (RAPD). Aquaculture Research, 35(6), 587-593.