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Abstract: This study examines cassava disease detection using four convolutional neural network (CNN) models: 

ResNet50, InceptionV3, AlexNet, and VGG16. Cassava, a staple crop in Africa, is threatened by Cassava Mosaic Disease 

(CMD) and Cassava Brown Streak Disease (CBSD). A dataset from the Lacuna Project, collected in Ugandan farmer fields, 

was used to train and evaluate these models, yielding accuracies of 90 percent, 88 percent, 85 percent, and 87 percent, 

respectively. A Flask web application was developed for practical deployment. This work builds on prior SVM and CNN 

approaches, offering a detailed comparison to enhance agricultural diagnostics for smallholder farmers. 

Keywords: Cassava; convolutional neural networks; ResNet50; InceptionV3; AlexNet; VGG16; disease detection; Flask. 

 

INTRODUCTION 
cassava is a vital food security crop, feeding 

over 800 million people worldwide, with significant 

production in [1]. However, diseases such as CMD, 

caused by a virus transmitted by whiteflies, and CBSD, 

which affects root quality, result in yield losses of up to 

70% in affected regions [1]. Traditional diagnosis relies 

on visual inspection by farmers or experts, a method 

prone to errors and impractical for large-scale 

monitoring. Machine learning offers a promising 

alternative, automating detection and enabling timely 

interventions. 

 

This project evaluates four CNN models, 

ResNet50, InceptionV3, AlexNet, and VGG16, using a 

dataset from Lacuna Project [2], comparing their 

performance to prior approaches like the Multi-class 

SVM by [3]. The objectives are to identify the most 

effective model and deploy it via a Flask web application 

for farmer use. This paper provides an extensive 

literature review, dataset details, methodology, results, 

and discussion, contributing to data-driven agricultural 

solutions. 

 

LITERATURE REVIEW 
The application of machine learning to plant 

disease detection has grown significantly, driven by 

advances in computer vision and the availability of field-

collected datasets. Early efforts relied on traditional 

algorithms. For instance, [3] developed a Multi-class 

Support Vector Machine (SVM) to classify cassava 

leaves into Healthy, CMD, and CBSD categories, 

achieving 93% accuracy on a 300-image dataset from 

Uganda. Their approach extracted Gray Level Co-

occurrence Matrix (GLCM) features, such as contrast, 

correlation, and homogeneity from images, leveraging 

SVM’s strength in small datasets. However, manual 

feature engineering limits scalability to larger, more 

diverse datasets. 

 

The advent of deep learning, particularly CNNs, 

shifted the paradigm toward automatic feature extraction. 

[4] pioneered CNN-based cassava disease detection, 

using a pre-trained InceptionV3 model fine-tuned on 

1656 field-collected images from Tanzania. They 

reported 87% accuracy across five classes (including 

CMD and CBSD), demonstrating transfer learning’s 

efficacy in agriculture. Their work highlighted 

challenges with class imbalance and image quality, 

issues also noted in the Lacuna Project dataset [2]. 

 

[5] extended this by integrating CNNs into 

mobile diagnostics, achieving 85% accuracy on a 500-

image dataset using a custom model. Their focus on real-

time deployment via smartphones aligns with this 

project’s Flask application, emphasizing practical tools 

for farmers. [6] compared multiple CNN architectures 

(e.g., AlexNet, VGG16) for plant disease classification, 
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finding that deeper models like VGG16 often outperform 

simpler ones like AlexNet on diverse datasets, though at 

higher computational cost. 

Other studies provide context for CNN 

selection. [7] introduced ResNet50, a 50-layer network 

with residual connections, excelling in ImageNet tasks 

(77% top-1 accuracy) due to its depth and ability to 

mitigate vanishing gradients. [8] proposed InceptionV3, 

optimizing computational efficiency with inception 

modules, while [9] developed AlexNet, a foundational 8-

layer CNN that sparked deep learning’s rise. [10] created 

VGG16, a 16-layer model with uniform 3x3 filters, 

balancing depth and simplicity. These architectures 

inform this study’s model choices, contrasting with [3] 

SVM approach. 

 

Despite these advances, gaps remain. Many 

datasets, like those in [6], are lab-based, lacking real-

world variability. The Lacuna Project dataset [2] 

addresses this by offering 9116 field-collected images, 

though its imbalance (55% CMD, 12% Healthy) poses 

challenges. This project builds on these efforts, testing 

CNNs against a subsampled dataset and comparing 

results to prior benchmarks. 

 

DATASET 

Composition and Source: 

The dataset is a 9116-image Cassava Image 

Dataset, collected by the Makerere AI Lab and NaCRRI 

under the Lacuna Project, funded by the Lacuna Fund 

[2]. Hosted at Harvard Dataverse, captured in Ugandan 

farmer fields comprising of 1119 Healthy, 5000 CMD, 

and 2997 CBSD images, it includes: 

• Healthy: 1119 images vibrant, uninfected leaves. 

• CMD: 5000 images yellowing, mosaic-patterned 

leaves from viral infection. 

• CBSD: 2997 images brown-streaked, necrotic 

leaves impacting roots. 

 

Preprocessing 

Images were resized to 224 by 224 pixels, 

matching CNN input requirements, and normalized using 

model-specific functions (e.g., ResNet50’s 

preprocessing) or standard normalization (AlexNet). 

Data augmentation, random flips, rotations, and zooms, 

addressed imbalance and variability, differing from the 

Lacuna Project’s cleaning to focus on cassava leaves [2] 

and [3] GLCM features. 

 

METHODOLOGY 

Model Architectures 

Four CNNs were implemented: 

a. ResNet50: A 50-layer network with residual 

connections, pre-trained on ImageNet [7], featuring 

25 million parameters. 

b. InceptionV3: A deep model with inception modules, 

pre-trained on ImageNet [8], with ~22 million 

parameters. 

c. AlexNet: An 8-layer network, trained from scratch 

[9], with ~60 million parameters. 

d. VGG16: A 16-layer network with 3x3 filters, pre-

trained on ImageNet [10], with ~15 million 

parameters. 

Each model includes custom layers: global average 

pooling, a 1024-unit dense layer with L2 

regularization, dropout (0.5), and a 3-unit softmax 

output, contrasting with the SVM’s feature-based 

approach [3]. 

 

Training Process  

Training occurred on Google Colab with GPU 

support. Pre-trained models (ResNet50, InceptionV3, 

VGG16) underwent two phases: initial training with 

frozen base layers (20 epochs, Adam optimizer, learning 

rate 0.001, class weights), followed by fine-tuning 

unfrozen layers (30 epochs, learning rate 0.00001). 

AlexNet was trained from scratch for 50 epochs with the 

same optimizer. Callbacks (early stopping, learning rate 

reduction) optimized convergence. 

 

Evaluation 

Performance was assessed using accuracy, 

confusion matrices, and classification reports on the 

validation set, mirroring metrics in [3]. 

 

RESULTS 
Dataset Composition 

 

Table 1: Dataset Composition 

Class Number of Images Percent 

Healthy 1119 12.3 

CMD 5000 54.8 

CBSD 2997 32.9 

Total 9116 100 

 

Model Accuracies 

 

Table 2: Model Accuracy Comparison 

Model Accuracy (Percent) 

ResNet50 90 

InceptionV3 88 

AlexNet 85 

VGG16 87 

 

Table 3: ResNet50 Confusion Matrix  
Healthy CMD CBSD 

Healthy 76 2 2 

CMD 3 75 2 

CBSD 2 3 35 

 

Table 4: ResNet50 Classification Report 

Class Precision Recall F1-Score 

Healthy 0.93 0.95 0.94 

CMD 0.94 0.94 0.94 

CBSD 0.90 0.88 0.89 
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Figure 1: ResNet50 Training and Validation Curves 

 

DISCUSSION 
ResNet50 achieved 90% accuracy, nearing the 

SVM’s 93% [3], outperforming InceptionV3 (88%), 

AlexNet (85%), and VGG16 (87%). Its success reflects 

pre-training benefits [7], unlike AlexNet’s lower score 

due to training from scratch [9]. InceptionV3 and 

VGG16 balanced accuracy and complexity [8,10], but 

trailed ResNet50. The balanced subsample improved 

CBSD detection over the skewed full dataset [2], 

addressing issues in [4].  

 

CONCLUSION 
ResNet50 led at 90% on a dataset from Lacuna 

Project, compared to SVM’s 93%. Future work could 

leverage the full 9116 images or explore ensemble 

methods. 
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