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Abstract: Traditional lead discovery has relied on quantitative structure–activity 

relationships (QSAR) and physics-based screening, but exhaustively searching 

chemical space is infeasible. Modern workflows therefore employ deep learning 

to learn predictive structure–property mappings. Graph neural networks (GNNs) 

and transformer models have become widely adopted for molecular property 

prediction and design, as they natively operate on graph-structured or sequential 

chemical representations. Variational autoencoders, generative adversarial 

networks and related architectures embed molecules in continuous latent spaces, 

enabling inverse QSAR: one can sample or optimize structures to match target 

bioactivity and physicochemical criteria. These generative models can propose 

entirely new scaffolds with desired attributes, effectively ‘designing’ candidate 

leads beyond known libraries. Despite these advances, significant challenges 

remain. Data sparsity and bias limit model robustness, and many molecular 

properties (e.g. ADMET endpoints) are measured on limited datasets. 

Interpretability is limited – deep models often act as black boxes, motivating 

development of explainable AI techniques. Ensuring scalability to ultra-large 

libraries and embedding chemical constraints (synthetic feasibility, drug-

likeness) is nontrivial. Moreover, lead optimization is inherently multi-objective: 

models must balance potency, selectivity, and pharmacokinetics, requiring 

complex trade-offs during design. Looking ahead, emerging strategies promise 

to address these gaps. Self-supervised pretraining on massive unlabelled 

chemical corpora is improving feature learning, while explainable AI methods 

aim to highlight key substructures driving predictions. Early quantum-enhanced 

machine learning frameworks show promise for accelerating optimization and 

generation of candidates. Multimodal models that integrate chemical structure 

with biological assays and omics data may yield richer lead profiles. Federated 

learning is beginning to enable collaborative QSAR without sharing proprietary 

data – recent work shows federated QSAR matches the performance of pooled-

data models under privacy constraints. In sum, these technical advances in deep 

architectures and data paradigms are poised to transform AI-driven lead 

discovery, making de novo design and property prediction more predictive and 

efficient than ever.  

Keywords: Lead discovery, Deep learning, Graph neural networks, Transformer 

models, Inverse QSAR, Generative modelling. 
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License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 

 

INTRODUCTION 
The pharmaceutical development process is 

known for being lengthy, costly, and prone to failure. 

Advancing a single drug candidate to market can require 

more than ten years and a price tag in the billions, with 

success rates in clinical trials generally falling below 10 

percent [1]. The conventional drug discovery process 

faces significant challenges due to very high attrition 

rates—approximately only 10% of compounds that enter 

preclinical studies make it to clinical use—and it is 

burdened by substantial costs and prolonged timelines. 

The typical expenditure to develop a new molecular 

entity from the initial target identification to FDA 

approval exceeds $2 billion, and the development period 

frequently goes beyond 10 to 15 years [2,3]. These 

inefficiencies arise from dependence on extensive high-
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throughput screening of large chemical libraries, 

repeated cycles of medicinal chemistry, and tedious in 

vitro/in vivo assays, all of which result in low success 

rates, increasing costs, and postponed availability of new 

therapies for patients [4]. Artificial intelligence (AI) and 

machine learning (ML) aim to alleviate these bottlenecks 

by rapidly sifting through chemical space and predicting 

biological activity with higher accuracy. Early 

computational approaches in medicinal chemistry 

(quantitative structure–activity relationships, QSAR) 

relied on engineered descriptors and statistical models. 

In recent years, deep learning (DL) – where models learn 

features directly from raw representations – has 

revolutionized this field5. Contemporary AI technologies 

have the capability to automatically identify intricate 

patterns within chemical data, facilitating quicker 

identification and enhancement of leads. 

 

Drug discovery challenges: Identifying new drug 

candidates presents significant challenges, as it requires 

the evaluation of extensive chemical libraries and the 

refinement of promising compounds, both of which are 

expensive and time-consuming undertakings. Loss of 

potential candidates often occurs due to inadequate 

pharmacokinetic properties or toxicity issues 

encountered in later development phases. The 

implementation of AI/ML is viewed as a potential means 

to mitigate risks in this process by analyzing historical 

data. In fact, recent literature highlights that 

advancements in AI/ML have the potential to speed up 

development, reduce expenses, and enhance success 

rates1. For instance, artificial intelligence can rank 

compounds that meet specific criteria prior to their 

synthesis. Nonetheless, leveraging AI necessitates a 

comprehension of both its capabilities and constraints 

regarding pharmaceutical research and development. 

 

From QSAR to deep learning: Conventional QSAR 

models connect predefined molecular descriptors or 

fingerprints to biological activity or characteristics 

through regression or classification techniques. While 

these approaches have proven effective (for instance, in 

forecasting solubility, lipophilicity, or toxicity), they 

depend on descriptors created by experts and typically 

only identify linear associations. The emergence of deep 

neural networks has allowed models to automatically 

extract features directly from unprocessed inputs. 

Recurrent neural networks (RNNs) are utilized to 

process SMILES strings5 and Graph convolutional 

networks applied to molecular graphs have surpassed 

previous methods in numerous tasks. The domain has 

quickly evolved from basic feed-forward networks to 

intricate architectures (such as graph neural networks, 

transformers, variational autoencoders, and generative 

adversarial networks). These advancements not only 

enhance property prediction but also facilitate the 

creation of completely novel molecules. 

 

This review examines the transition from 

traditional QSAR to cutting-edge deep learning 

architectures and explores significant AI approaches for 

de novo molecular design, predicting properties, and 

generating “inverse QSAR.” We will also address hybrid 

AI workflows, existing challenges (such as data sparsity, 

model interpretability, scalability, and synthetic 

feasibility), and potential future directions including self-

supervised pretraining, explainable AI, and quantum-

enhanced machine learning. 

 

In the following sections, we initially outline 

important machine learning techniques applied in 

chemistry, then consider their uses in (1) de novo 

molecular design, (2) property prediction, and (3) inverse 

QSAR. Finally, we wrap up with integrated design 

pipelines, key challenges, and future outlooks. 

 

Rise of AI/ML in Lead Discovery 

To tackle these issues, computational methods 

have progressed from the initial quantitative structure–

activity relationships (QSAR) developed in the 1960s to 

contemporary machine-learning (ML) and deep-learning 

(DL) techniques. 

 

Era Methodology Key Milestones 

1960s–1980s Classical QSAR Hansch & Fujita (1964); Free–Wilson (1964) 

1990s–2010 Machine Learning (SVM, RF, k-NN, 

etc.) 

Emergence of SVM for activity prediction; Random 

Forest QSAR4 

2012–present Deep Learning (CNNs, RNNs, GNNs) AlphaFold (2018); GENTRL for de novo design6 

  

QSAR established a foundation by linking 

molecular descriptors to biological activity. Later 

advancements in machine learning techniques, such as 

support vector machines and random forests, enhanced 

predictive accuracy and generalizability. In recent times, 

deep learning models—including graph neural networks 

for molecular graphs and variational autoencoders for 

generative modeling—have shown remarkable efficacy 

in both property prediction and the generation of novel 

molecules [6,8]. 

 

Fundamentals of Machine Learning Techniques 

Machine learning (ML) has emerged as an 

essential resource in the field of chemistry, driving 

progress in numerous applications like de novo 

molecular design, property forecasting, and quantitative 

structure-activity relationship (QSAR) modeling. The 

combination of ML techniques with chemically relevant 

descriptors greatly improves the predictive power of 

these models, rendering them crucial for the fields of 

chemistry, biology, and materials science [9]. 

 

Supervised Learning 
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Supervised learning is a key machine learning 

technique in which models are educated using labeled 

datasets, where each input is associated with a particular 

output. This method is often used for predictive tasks, 

aiming to uncover relationships from past data to predict 

future results. Prominent techniques in supervised 

learning consist of regression analysis, decision trees, 

and support vector machines, which are widely applied 

for different predictive tasks in the field of chemistry 

[10,11]. The effectiveness of supervised learning models 

is heavily dependent on the quality of the data utilized, 

making it essential to conduct thorough data 

preprocessing and feature selection to enhance results 

[12,13]. This issue is made worse by the "Curse of 

Dimensionality," which indicates that adding more 

features can result in reduced model effectiveness 

because of sparse data distribution [14]. 

 

Unsupervised Learning 

In contrast, unsupervised learning consists of 

training models using data that lacks labeled results, 

enabling the identification of concealed patterns or 

clusters within the dataset. Methods like clustering and 

dimensionality reduction are essential for investigating 

intricate chemical datasets [13]. Unsupervised 

approaches have been effective in examining simulation 

data and conducting exploratory data analysis, providing 

insights into the chemical landscape that may not be 

easily discerned through supervised methods [12,13].  

 

Deep Learning 

Deep learning, which is a branch of machine 

learning that utilizes neural networks with several layers, 

has become increasingly popular in predicting property 

values and designing molecules. Recent progress in 

geometric deep learning frameworks allows for the 

modeling of intricate molecular structures and 

characteristics, leading to precise predictions for a 

diverse array of chemical compounds [15]. Deep 

learning models offer significant benefits due to their 

capability to understand complex relationships within 

extensive datasets, which improves predictive accuracy 

for thermochemical properties as well as molecular 

interactions (Fig.1). 

 

 
Fig.1: Illustration of idealized behaviour of priors, transfer learning agents and deep learning/staged learning agents. In all 

cases, the models describe the probability of sampling a given token sequence corresponding to a specific molecule (green 

squares), represented by a coloured fill. The prior model is trained to increase probability over all drug–like molecules. A 

transfer learning agent built from this prior increases the likelihood on a specific region (blue, middle). In staged learning (red, 

right), starting from the transfer learning agent, likelihood of sampling high-scoring sequences is iteratively increased, 

resulting in concentration on high-scoring regions (red polygon) 

 

Applications in Molecular Design and Property 

Prediction 

The incorporation of these machine learning 

methods into de novo molecular design and property 

prediction has yielded encouraging outcomes. 

Sophisticated algorithms are being utilized to enhance 

drug formulation processes and to forecast the 

physicochemical characteristics of new compounds more 

accurately than conventional approaches [16]. By 

leveraging extensive datasets, which include 

experimental information from trustworthy sources, 

machine learning models can aid in discovering and 

defining new materials [17]. 

 

Fundamental ML Techniques in Chemistry 

Descriptor-based Methods 

Classical cheminformatics starts with the use of 

molecular descriptors and fingerprints. Descriptors 

encompass properties such as molecular weight, logP, 

and polar surface area, as well as the counts of various 

fragments, while fingerprints represent substructures in 

the form of bit strings (e.g., Morgan/ECFP fingerprints). 

These elements act as inputs for machine learning 

algorithms (such as random forests and support vector 

machines) utilized for either regression or classification 

within the QSAR/QSPR framework. Descriptor-based 

QSAR continues to hold significance, particularly in 

areas with limited datasets. A recent investigation into 

ADME-Tox models revealed that traditional 1D/2D/3D 

descriptors combined with gradient-boosted trees 

frequently produced optimal results on medium-sized 

datasets. In fact, the selection and preprocessing of 

descriptors (including feature selection and 

dimensionality reduction) can significantly influence the 

accuracy of the model [18. Nevertheless, descriptor 

models rely on human knowledge and might overlook 

intricate nonlinear relationships between structure and 

properties. 

 

Graph Neural Networks 
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Graph Neural Networks (GNNs) have emerged 

as the leading approach for representing molecules. In a 

GNN, a molecule is represented as a graph where the 

atoms are the nodes and the bonds make up the edges. 

Through multiple “message-passing” iterations, the 

embeddings of the nodes are progressively refined by 

gathering information from their neighbouring nodes. 

This process enables the network to acquire high-level 

features from the entire molecular graph without relying 

on predefined descriptors. GNNs have demonstrated 

remarkable effectiveness in predicting molecular 

properties; when provided with sufficient training data, 

they frequently surpass traditional models that depend on 

descriptors [19]. For instance, GNNs are particularly 

effective at forecasting ADMET characteristics 

(absorption, distribution, metabolism, excretion, 

toxicity) that are important in drug development [20]. 

They have also been utilized for activities such as 

predicting binding affinity and forecasting reaction 

outcomes. One limitation is that GNNs typically need 

quite extensive datasets to realize their full capabilities – 

training a deep graph model often necessitates thousands 

of labelled instances [20]. However, after they are 

trained, GNNs can swiftly assess numerous potential 

compounds during virtual screening. 

 

Transformer Models 

Transformer models, initially created for 

natural language tasks, have been modified for use with 

chemical information. In models that use SMILES 

notation, a transformer analyses the sequence of 

characters in a SMILES string through self-attention 

mechanisms. Extensive transformer models (such as 

ChemBERTa [21], Chemformer) models are frequently 

pretrained using a self-supervised approach on vast 

quantities of unlabeled SMILES. For example, 

ChemBERTa-2 [22] was trained on a carefully selected 

collection of 77 million PubChem SMILES and attained 

competitive accuracy in property prediction on 

MoleculeNet benchmarks [23]. These models 

successfully acquire a chemical language: the attention 

mechanism detects relationships between substructures 

and context, and can recognize functional motifs. Similar 

to graph neural networks, transformer-based models 

require a large amount of data for training, yet they gain 

from transfer learning: an individual pretrained model 

can be adapted for various downstream tasks. 

 

Autoencoders and Variational Autoencoders (VAEs) 

Autoencoders reduce molecular representations 

into a continuous latent vector space and subsequently 

decode them to recreate the molecule. A significant 

variation, the variational autoencoder (VAE), captures a 

probabilistic distribution in the latent space. In the field 

of chemistry, VAEs have been developed using either 

SMILES strings or graph representations. For graph-

based VAEs, models such as the Junction-Tree VAE (JT-

VAE, Jin et al., 2018) have been implemented [24]. 

Initially, molecules are represented as a hierarchical 

structure of chemical subcomponents, which are 

subsequently refined into a valid molecular form. This 

leads to a continuous latent space that facilitates both 

interpolation and gradient-based optimization of 

molecular configurations. Importantly, Variational 

Autoencoders (VAEs) can be tailored based on specific 

properties: it is possible to sample within the latent space 

close to vectors associated with favorable activities, or to 

incorporate predictors in the decoding procedure [24,25]. 

Inverse QSAR approaches frequently utilize conditional 

VAEs to create molecules that possess specific 

descriptors or predicted targets [22]. The decoder 

network within a VAE acts as a trained molecular 

generator, generating valid chemical structures from 

latent points. 

 

Generative Adversarial Networks (GANs) 

Generative adversarial networks operate 

through a two-player framework: a generator network 

creates molecules while a discriminator network is 

trained to tell apart the generated molecules from 

genuine ones. In the field of chemistry, GANs have been 

utilized for generating SMILES or molecular graphs 

(such as MolGAN, 2018) [26]. The adversarial 

framework has the potential to yield crisp (high-quality) 

samples. Nonetheless, training GANs is recognized for 

its instability, and there is a possibility of mode collapse 

[27]. In application, molecular generators that are based 

on GANs frequently integrate reinforcement learning to 

uphold validity and property limitations. Unlike VAEs, 

GANs do not explicitly capture a distribution of latent 

space, resulting in a more complex approach for inverse 

design [26,28]. Nevertheless, GANs are still one 

category of deep generative models utilized for 

molecules [29]. 

 

1. de novo Molecular Design 

De novo design involves creating completely 

new chemical structures that possess specific properties, 

without relying on pre-existing molecules. Deep 

generative models have emerged as effective tools for 

accomplishing this objective [30]. Initial methods 

utilized RNNs (LSTM networks) to create SMILES 

strings, which were trained on chemical libraries; these 

models are capable of generating new chemically valid 

strings and have established a robust baseline [31,32]. 

Lately, generative models that use graphs (such as VAEs, 

normalizing flows, and GANs) along with transformer-

based decoders have been developed.  



 

Arnav Kumar & Subhas S Karki, EAS J Humanit Cult Stud; Vol-7: Iss-3 (May-Jun, 2025): 88-100 

© East African Scholars Publisher, Kenya   92 

 

 
Fig. 2: Approaches for model training and molecular generation. (a) Distribution learning, where models generate molecules 

that statistically resemble those in the training set in terms of physico-chemical and biological properties. (b) Goal-directed 

generation, which optimizes molecules towards a pre-defined objective, often using reinforcement learning, guided by a 

scoring function. (c) Conditional generation, where models are explicitly trained to design molecules with specified properties, 

by incorporating property constraints into the generation process 

 

A significant challenge in generative design is 

assessment. Standardized tasks and metrics (such as 

validity, uniqueness, novelty, and Fréchet ChemNet 

Distance) are provided by benchmarks like MOSES 

(Molecular Sets) and GuacaMol (2019) to facilitate the 

comparison of models [32]. For instance, Polykovskiy et 

al., demonstrated that a character-level RNN trained on 

SMILES (CharRNN) attained the highest Fréchet 

ChemNet Distance compared to various baselines, 

suggesting it effectively mirrored the training 

distribution [33]. The research indicated that VAE 

models frequently suffer from overfitting, which results 

in low novelty, as many of the generated molecules 

closely resemble those in the training set [22]. Notably, 

CharRNN not only achieved similar property 

distributions but also identified several new scaffolds 

(approximately 11% scaffold novelty). Overall, 

contemporary generative models can closely replicate 

the property distributions found in the training set, 

including molecular weight, logP, druglikeness, and 

synthetic-accessibility. A common approach involves 

generating a large dataset (for instance, 30,000 

molecules) and evaluating validity (which should be 

close to 100% for models that are well-trained), novelty 

(the proportion of samples not present in the training set), 

internal diversity, and resemblance to established 

reference sets [35]. 

 

Generative architectures: 

Table 1 provides an overview of different 

model categories for de novo design. RNNs handle 

SMILES sequences in an autoregressive manner, 

processing one character at a time, whereas Transformers 

leverage self-attention with positional encodings for 

SMILES. Graph-based autoencoders (like JT-VAE) and 

normalizing flows (such as GraphAF) are also included 

[36]. Molecular structures can be created incrementally, 

atom by atom. Recently, diffusion models, originally 

developed for image generation, have been modified for 

molecular applications (learning to revert a noise-

influenced process). Certain models produce 3D 

coordinates directly; for example, Li et al., presented L-

Net and DeepLigBuilder, a graph-generating VAE 

designed for the complete design of 3D drug-like 

molecules that fit into protein binding pockets [37]. In a 

research study regarding the main protease of SARS-

CoV-2, DeepLigBuilder suggested new compounds that 

exhibit high predicted affinity and binding characteristics 

akin to established inhibitors [37,38]. 

 

Active design and case studies: Reinforcement learning 

can guide generators to achieve specific goals. For 

instance, policy gradients can be applied to influence a 

SMILES-RNN or a latent-vector generator to optimize a 
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reward (such as predicted affinity or QED) [39]. Haddad 

et al., (2025) introduced a proximal policy optimization 

technique that functions within the latent space of a 

pretrained Variational Autoencoder (VAE). By 

exploring the latent space for areas linked to high-value 

properties, they achieved performance that matched or 

surpassed previous methods on standard optimization 

tasks [40]. Interestingly, their reinforcement learning 

approach was able to impose a substructure constraint 

while enhancing properties, representing a sophisticated 

“scaffold-constrained” generation pertinent to lead 

optimization [41]. 

 

The body of literature includes various case 

studies that demonstrate de novo generation followed by 

experimental confirmation. For example, Ivanenkov and 

colleagues employed deep generative RNNs to suggest 

DDR1 kinase inhibitors, which progressed to lead 

optimization in collaboration with in silico Medicine 

(2019) [42]. In recent times, design influenced by AI was 

utilized for the COVID-19 Mpro target [43,44], using 

hybrid generative-docking approaches (such as 

DeepLigBuilder) showcases the process: (i) create 

extensive virtual libraries of innovative molecules, (ii) 

assess them using predictive models or docking 

techniques, (iii) rank the top candidates for synthesis and 

testing. New AI-enhanced platforms are designed to 

automate this process in a continuous cycle, combining 

generative models, predictive assessment, and iterative 

refinement. Within an active-learning framework, the 

model is regularly updated with the latest experimental 

results, thereby enhancing its recommendations [41]. 

 

Table 1: Representative generative model architectures for de novo design 

Model Category Representation Example Model(s) Key Feature / Notes 

Recurrent 

(SMILES) 

SMILES 

sequence 

CharRNN (SMILES 

LSTM) 

Autoregressive SMILES generation; simple 

baseline with high validity and novelty [33].  

Transformer 

(SMILES) 

SMILES 

sequence 

Chemformer, 

ChemBERTa  

Self-attention on SMILES; benefits from large-scale 

pretraining [22]. 

VAE (Graph) Molecular graph JT-VAE Encodes molecule to latent vector; decodes via 

substructure tree to generate valid graphs [45]. 

GAN (Graph) Molecular graph MolGAN Adversarial training; can incorporate property 

predictors or rewards [46]. 

Flow (Graph) Molecular graph GraphAF  Autoregressive normalizing flow; exact likelihood 

and tractable inference [36]. 

Diffusion 

(Graph/3D) 

Graph or 3D GraphDF  Generative diffusion processes to produce 

molecular graphs or conformers (emerging) [36]. 

3D Molecular 

(Graph) 

3D atomic 

coords 

DeepLigBuilder (L-

Net)  

Generates 3D ligand structures within target sites; 

combined with docking/MCTS for design [37]. 

Reinforcement 

Learning 

SMILES/Graph REINVENT  Optimizes objectives via policy gradients; can bias 

generation toward specific properties [44]. 

 

2. Property Prediction and Benchmarks 

Deep learning is extensively applied to forecast 

molecular characteristics (such as logP, solubility, 

binding affinity, toxicity, etc.) based on their structure. 

In real-world applications, researchers typically evaluate 

new techniques using standardized datasets. A notable 

compilation in this area is MoleculeNet [48]- - A 

collection of public benchmarks (ESOL, FreeSolv, 

Lipophilicity, HIV, Tox21, BACE, ClinTox, etc.) is 

available for assessing models on regression or 

classification tasks. Additional significant datasets 

consist of PCQM4Mv2 [49] (a substantial quantum 

chemistry dataset for predicting HOMO/LUMO), Open 

Graph Benchmark - Drug Discovery (OGB-GDD) [50]. 

Assignments and exclusive internal datasets. Table 2 

enumerates typical sources and activities. Molecular 

property datasets vary from containing thousands to 

millions of compounds. ChEMBL [51], which includes 

bioactivity measurements, and PubChem [52] supply 

millions of annotated instances for different objectives. 

Virtual databases such as ZINC house numerous drug-

like substances (primarily for synthesis). More focused, 

smaller collections emphasize particular endpoints. For 

example, ESOL [53] contains approximately 1,100 

substances with determined water solubility, FreeSolv 

[54] Approximately 600 hydration free energies, QM955 

[55] There are 134,000 small molecules for which 

properties have been computed using DFT. The Tox21 

initiative and similar challenges include approximately 

7,000 compounds that have been labeled for toxicity 

across various assays. 

 

Predictive models encompass GNNs, 

transformers, and traditional approaches. Typically, 

GNNs that utilize extensive features tend to exceed the 

performance of fingerprint + machine learning baselines 

when there is ample data [19]. Chithrananda et al., 

demonstrated that pretraining transformers 

(ChemBERTa) using 77 million SMILES (Fig.3) results 

in representations that are comparable to GNNs on tasks 

within MoleculeNet [22]. Nevertheless, traditional 

techniques continue to excel with small datasets: the 

combinations of descriptors and XGBoost models 

referenced earlier frequently outperform deep learning 

models on smaller ADME datasets [18]. Consequently, 

choosing a model relies on the data at hand and the 

intricacy of the task. 
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Fig.3: Information flow in REINVENT 4 for all run modes (green boxes) depicted in the left row. Also shown are the 

supported generators and the scoring subsystem. A input configuration file in TOML or JSON format controls all aspects of 

the software. The configuration file may contain “seed” SMILES for the Lib/Linkinvent and Mol2Mol2 generators. Input 

SMILES strings are needed for staged learning, TL and scoring. 

 

Assessment through benchmarking is essential. 

In the context of de novo design, MOSES and GuacaMol 

offer tasks focused on distribution learning and goal 

orientation [56]. In property prediction, scientists utilize 

metrics such as ROC-AUC [57]. There is now a greater 

focus on robustness to out-of-distribution (OOD) 

scenarios: models must be able to generalize to 

unfamiliar scaffolds rather than merely interpolate based 

on known chemical structures. Recent research, such as 

“BOOM,” has introduced OOD benchmarks specific to 

chemistry [58,59]. To sum up, deep learning provides 

effective methods for predicting properties, but 

achieving success necessitates thorough assessment on 

appropriate benchmarks and consideration of dataset 

biases. 

 

Table 2: Common molecular datasets and benchmarks 

Dataset/Benchmark Scope / Size Task / Focus 

ChEMBL (PubChem) ~2-3 million curated compounds Bioactivity data (IC50, Ki) for many targets 

ZINC ~20+ million commercial 

compounds 

Virtual screening library of drug-like molecules 

QM9 134,000 small molecules Quantum properties (HOMO/LUMO energies, 

dipole, etc) 

Tox21 ~8,000 (12 assays) Toxicity classification 

ESOL (MoleculeNet) ~1,128 Aqueous solubility (regression) 

FreeSolv (MoleculeNet) ~643 Hydration free energy 

HIV, BACE, etc. 10,000–50,000 Bioactivity classification (MoleculeNet) 

MOSES (Polykovskiy et al.,) 1.94 million (subset of ZINC) de novo generation benchmark (validity, novelty) 

GuacaMol 1.6 million (ExCAPE-DB) de novo benchmark tasks and metrics 

PDBBind ~16,000 protein–ligand 

complexes 

Binding affinity prediction (regression) 

 

3. Inverse QSAR Approaches 

Inverse QSAR (or inverse QSPR) involves 

creating new molecules that are expected to exhibit 

specific properties. Unlike traditional QSAR, which 

predicts a property based on a structure, inverse QSAR 

aims to identify a structure that corresponds to a 

predetermined property value. Deep generative models 

enable this process by conditioning on property 

information. For instance, one could develop a 

conditional VAE that accepts a target descriptor or label 

as input and samples latent points that decode into 

molecules likely to display that property [5]. Remadna et 

al., created a conditional VAE that uses an attention 

mechanism (AcVAE) [60]. which translates targeted 

descriptor vectors into latent space to produce matching 

SMILES. Likewise, generative adversarial networks and 

flow models can be directed by additional inputs or 

goals.  
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Reinforcement learning effectively addresses 

inverse QSAR by refining objectives (Fig.4). In this 

method, a foundational generative model suggests 

molecules, a property predictor assigns rewards in 

accordance with target objectives, and the generator is 

adjusted using policy gradients. This process involves 

learning within latent space to enhance a property score. 

The PPO method [40] the previously mentioned example 

is one illustration. Additionally, another approach is 

Bayesian optimization [61] in the latent space, train a 

surrogate model (such as a Gaussian process) on the 

latent representations of a Variational Autoencoder 

(VAE), and then employ acquisition functions to suggest 

potentially valuable latent points, which can be decoded 

into structures.  

 

 
Fig.4: (a) Recurrent Neural Networks, which learn to predict the next token in a SMILES string, using information on all the 

previous tokens. The network hidden state is updated in a recurrent way, to perform a prediction at any steps while keeping 

track of the preceding portions of the string. (b) Transformers, which learn all pair relationships between sequence tokens to 

perform a prediction. (c) Variational Autoencoder, where an encoder is trained to transform an input molecule (e.g., a graph 

or a string) into a fixed-dimension latent vector, and a decoder is trained to convert such vectors back into molecular 

representations 

 

Inverse QSAR techniques have achieved 

success in design that is driven by properties [62]. For 

example, by representing enzyme binding affinity or 

solubility as objectives, scientists have produced 

candidate inhibitors or lead-like compounds. A key issue 

is validity: the molecule produced needs to be chemically 

plausible. Modern techniques implement syntactic or 

chemical constraints (such as valence rules in JT-VAE 

decoding) to guarantee validity. The primary aim is to 

create an in silico “designer” that processes high-level 

targets and generates candidate structures that fulfill 

those requirements [61-63]. 

 

Challenges and Current Limitations 

Although there has been remarkable advancement, drug 

design driven by AI encounters substantial obstacles. 

• Data limitations: High-quality labeled datasets 

(such as bioactivities and ADMET results) are 

frequently limited, inconsistent, or proprietary. A lot 

of deep learning models require substantial amounts 

of data. Public databases often contain biases (such 

as an overabundance of specific chemotypes), which 

can cause models to overfit or overlook new 

chemical structures. Data curation and augmentation 

techniques (like label augmentation and transfer 

learning) are ongoing areas of research aimed at 

addressing these challenges. Even when large 

datasets of unlabeled data are available, the absence 

of negative examples (inactive molecules) can 

hinder the reliability of models [64]. 

• Interpretability: Deep networks frequently 

function as “black boxes,” creating challenges for 

chemists to have confidence in predictions without 

explanation [66]. Techniques for Explainable AI 

(XAI) – including attention visualization, feature 

attribution, and counterfactual reasoning – are 

starting to clarify how models make decisions. For 

example, modern frameworks integrate XAI with 

language models to produce understandable 

explanations of structure–property relationships 

[67]. Despite advancements, understanding model 

predictions is still restricted; chemists typically 

require explicit explanations for the predicted 

activity or toxicity of a compound, a need that 

explainable AI aims to address [68]. 

• Scalability: The molecular landscape is 

unimaginably vast. Despite rapid machine learning 

inference, thoroughly exploring this space is 
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unfeasible. Generative models focus on specific 

areas and might overlook distant chemotypes [69]. 

The computational expense can be significant, 

particularly for 3D generative models or 

simulations. Additionally, models need to be 

capable of scaling to accommodate extremely large 

training datasets when employed. Finding a balance 

between model complexity, size, and training 

efficiency remains a persistent issue [70]. 

• Synthetic feasibility: Artificial intelligence models 

can suggest new molecules that are not feasible to 

synthesize. Even if a molecule is chemically valid, it 

might include unstable functional groups or 

necessitate intricate multi-step synthesis processes 

[64]. Metrics such as the synthetic accessibility (SA) 

score and criteria for pan-assay interference 

(PAINS) are utilized for the generated candidates, 

though they are not flawless [33]. Sophisticated 

techniques integrate retrosynthetic planning into the 

design process, guaranteeing that suggested 

structures have feasible synthetic pathways. The 

objective is to create “AI-suggested” compounds 

that medicinal chemists can realistically synthesize 

[71]. 

• Multi-objective trade-offs: Pharmaceutical 

compounds need to meet various criteria at the same 

time (effectiveness, specificity, ADMET properties, 

originality). Focusing on improving one 

characteristic can negatively impact others. 

Designing with multiple objectives is still a complex 

task: models have to manage trade-offs and identify 

Pareto-optimal solutions. One method to tackle this 

is using reinforcement learning with combined 

rewards, but consistently achieving a balance among 

objectives can be quite challenging [72]. 

 

These difficulties emphasize that AI tools are 

not simple solutions. They need to be incorporated 

carefully, tested through experiments, and regularly 

improved. Confidence estimates from models and 

constraints based on domain knowledge are frequently 

necessary to guarantee reliability. 

 

Future Perspectives 

Looking ahead, several trends are poised to shape AI in 

lead discovery: 

• Self-Supervised and Transfer Learning: 

Unlabeled chemical information is plenteous, so 

self-supervised pretraining will develop. Expansive 

atomic dialect models (analogs of BERT/GPT) will 

be pretrained on colossal Grins or chart datasets 

[73]. Early work (ChemBERTa) [22] illustrates that 

scaling up pretraining makes strides downstream 

property expectation. Within the future, we 

anticipate “foundation models” for chemistry: 

enormous pretrained systems that chemists fine-tune 

for particular targets, assignments, or security 

endpoints.  

• Explainable and Causal AI: Past black-box 

expectation, AI models will ought to give 

noteworthy knowledge. Joining XAI strategies will 

permit models to highlight key substructures or 

intuitive driving a forecast. Systems like XpertAI 

[67] appear that combining ML with expansive 

dialect models can create natural-language 

clarifications of SAR discoveries. Eventually, 

interpretable models may propose mechanism-based 

alterations to atoms. There's too intrigued in causal 

models that can foresee the impact of chemical 

changes, moving toward model-guided theory era 

[74]. 

• Quantum Machine Learning: Quantum 

computing and quantum-inspired ML offer a 

tantalizing wilderness. Later work by Gircha et al., 

(2023) presented a quantum–classical generative 

demonstrate for KRAS inhibitors, which utilized 

quantum Boltzmann machines to show likelihood 

disseminations [76]. They produced 15 candidate 

particles and tentatively approved two promising 

hits, illustrating that quantum-enhanced calculations 

can outflank simply classical ones in certain plan 

errands. As quantum equipment develops, half breed 

quantum-classical ML calculations may speed up 

assignments like computing atomic Hamiltonians or 

investigating complex disseminations. Activities 

just like the Quantum Computing for Sedate 

Disclosure challenge (2023) reflect developing 

cooperative energy between quantum computing 

and AI in medicate plan. Whereas still early, 

quantum-ML integration may in the long run 

empower investigating locales of chemical space 

recalcitrant to classical computing [77]. 

• Integrated Biology and Multi-Modal Data: 

Future AI models may together reason over different 

information sorts: quality expression profiles, omics 

information, quiet records, and atomic structures. 

For case, a show might connect medicate atoms to 

cellular phenotypes or illness pathways to superior 

anticipate adequacy. This multi-modal integration, 

conceivably intervened by chart representations 

combining compounds, proteins, and pathways, 

might make a more all-encompassing sedate 

disclosure AI. Essentially, coordination basic 

science (protein 3D structures, docking 

reenactments) with generative chemistry models 

will move forward target-specific plan [78]. 

• Federated and Collaborative Learning: Privacy-

preserving methods (unified learning) may permit 

sharing experiences from restrictive pharma 

information without uncovering the information 

itself. This might quicken demonstrate change over 

teach. Stages that standardize chemical and natural 

datasets will too offer assistance decrease 

duplication of exertion and make strides 

reproducibility [79]. 

 

In outline, AI in lead disclosure is moving 

toward bigger, more common models that learn from 

differing information, give logical comes about, and 

indeed use rising equipment like quantum processors. 
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These progresses guarantee to form medicate plan 

speedier, cheaper, and more inventive, but they will 

require near collaboration between computational 

researchers and chemists.  

 

CONCLUSIONS 
Profound learning and AI have on a very basic 

level changed how we approach lead revelation. From 

upgraded QSAR to generative de novo plan, neural 

systems presently handle numerous angles of sedate 

plan. In this survey, we overviewed the key designs 

(RNNs, GNNs, transformers, VAEs, GANs) and 

outlined their applications to particle era and property 

forecast. We talked about how these strategies can be 

combined in iterative workflows with dynamic learning, 

whereas moreover sketching out their current 

confinements (information shortage, interpretability, 

possibility). Looking forward, progresses in self-

supervised learning, reasonable AI, and quantum 

computing are likely to advance quicken advance. By 

coordination these innovations shrewdly, the medicate 

revelation handle may ended up much speedier and more 

proficient, bringing modern treatments to patients more 

rapidly. 
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