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Abstract: MRI and CT are the two most widely used medical imaging techniques.
Often, doctors need images from both modalities to diagnose conditions accurately
and plan treatments like radiation therapy. However, using both MRI and CT can
be costly, and it often results in misaligned images. A practical alternative is to use
computational methods to convert images from one modality to another—
particularly converting MRI images into CT images. In this study, we explore a
deep learning approach using diffusion models and score-matching techniques to
Quick Response Code address this challenge. Specifically, we adapt denoising diffusion probabilistic
™ models and score-matching strategies, apply four different sampling methods, and
compare their performance with that of traditional models like generative
adversarial networks (GANs) and convolutional neural networks (CNNs). Our
results show that diffusion and score-matching models generate synthetic CT
:':5' images with higher quality than CNN and GAN approaches. We also assess the
uncertainty in these models using Monte Carlo simulations and further improve the
final image quality by averaging the Monte Carlo outputs. Overall, our research
suggests that diffusion and score-matching models not only rival CNNs and GANs
in generating cross-modality medical images but also offer a more mathematically
grounded and reliable framework.
Keywords: Computed Tomography, Magnetic Resonance Imaging, Image
Synthesis, Uncertainty Estimation, Diffusion Model, and Score-Matching Model.
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currently done separately, which is not only costly but
also causes nonrigid misalignment between MRl and CT
pictures, simultaneous CT-MRI is still a study topic [2].
This issue might be resolved by creating a simultaneous

INTRODUCTION

The two most popular medical imaging
techniques are computed tomography (CT) and magnetic

resonance imaging (MRI). While CT is the preferred
technique for imaging hard tissues like bones and the
interfaces between air, bone, and soft tissues, MRI
provides excellent contrast images of soft tissues like
organs and arteries. Clinical practice frequently uses
multi-modality imaging using MRI and CT because of
their complementing characteristics. For instance,
radiation necessitates both CT and MRI since MRI
defines soft tissues and malignancies, while CT offers an
electron density distribution that is essential for
treatment planning [1]. While CT and MRI scans are

CT-MRI device, and we have carried out research to
suggest the best possible designs for such a device [3, 4].

One practical solution to the above described
issue is medical image synthesis. This method simulates
a mapping between a source image and an unidentified
target image. Traditional image synthesis techniques
concentrate on using a variety of models, including
random forest and dictionary learning, to extract expert-
defined features [5]. These techniques, however, are only
applicable to manually created feature representations.
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Deep learning has recently demonstrated enormous
promise and remarkable success in medical image
processing tasks, including artefact reduction [10, 11],
super-resolution [8, 9], and denoising [6, 7]. Deep neural
networks generate better feature representations and
learn features in a data-driven manner than conventional
techniques. Recent years have seen the publication of
numerous deep learning-based cross-modality medical
picture synthesis research, the majority of which are
based on generative adversarial networks (GANs) and
convolutional neural networks (CNNs) [12-32]. A new
generating technique that has garnered a lot of interest in
the field of medical imaging is diffusion and score-
matching models. High-fidelity, realistic natural images
can be produced by these models [33-35]. Diffusion and
score-matching models are analytically principled,
simple to train, and provide state-of-the-art image quality
when compared to other generative model types like
GANs and variational auto-encoders, which are
challenging to train and interpret and don't always
produce satisfactory image quality. Remarkably, a
growing body of research indicates that in several image
production tasks, diffusion and score-matching models
outperform GANSs and variational auto-encoders [36].

With a focus on mapping from MRI to CT
images, we suggest using diffusion and score-matching
models for image conversion between CT and MRI in
this article. Our analysis is based on two models: the
model that solves the stochastic differential equation
(SDE) [35], and the denoising diffusion probabilistic
model (DDPM) [34]. These models are contrasted with
consistent network architecture CNN and GAN models.
By averaging these random samples, we may further
quantify the diffusion models' uncertainties from Monte-
Carlo sampling results and get better results.

Synthesis of Deep Medical Images

Researchers used deep learning for medical
imaging problems after being inspired by its success in
the computational vision area. CNN and GAN models
were suggested for medical picture synthesis. Nie et al.,
[12], suggested a 3D fully convolutional network to
create pelvic CT images from the matching MRI pictures
in order to convert images between MRI and CT
modalities. A cascaded GAN model with several
consecutive generators and discriminators was then
suggested [16]. A CNN model based on an encoder-
decoder backbone was created by Bahrami et al., [27],
who also noted that the suggested model demonstrated a
rapid rate of convergence with a small number of training
subjects. Leynes et al., [14], and Han et al., [13], both
used UNet to create synthetic CT images. Tao et al., [30],
and Emami et al., [17], developed GAN models using
ResNet. A conditional GAN was constructed by Boni et
al., [28] using multi-center pelvic datasets to produce

synthetic CT images. Additionally, CycleGAN was used
to create synthetic MRI and CT images by Chartsias et
al., [15], Hiasa et al., [18], Zhang et al., [19], and Cai et
al., [25]. When converting brain CT scans into MRI
pictures, Li et al., [26], evaluated the effectiveness of the
UNet, cycleGAN, and pix2pix models and discovered
that UNet performed the best out of the three.

A conditional GAN with a fully convolutional
network for liver PET image synthesis was proposed by
Ben-Cohen et al., [20], for image synthesis between CT
and PET modalities. In order to minimise a complex
objective function, Armanious et al., [21], constructed a
model named MedGAN using cascaded encoder-
decoders. A multi-channel GAN model that can encode
semantic information was created by Bi et al., [22]. Ben-
Cohen et al., [29], improved lesion identification by
creating synthetic PET images using a GAN model with
a fully connected network. Wei et al., [24], suggested a
sketcher-refiner approach using two cascaded GANs for
image synthesis between MRI and PET modalities. The
initial GAN produces rough artificial images. The results
are refined by the second GAN. Choi et al., [23], used
UNet as the generator to create a GAN model for MRI
image synthesis. A model named BPGAN was
introduced by Zhang et al., [32], to create synthetic brain
PET images. The bidirectional mapping generative
adversarial network (BMGAN), a 3D end-to-end
synthesis model created by Hu et al.,, [31], jointly
optimised the latent vector and picture context for brain
MRI-to-PET image synthesis.

Models of Diffusion and Score-Matching

With remarkable generative capabilities for a
variety of tasks, including image generation, super-
resolution, and picture in-painting, diffusion and score-
matching models are emerging as the most promising
deep generative models [36]. A forward stage is typically
used to add noise gradually, while a reverse stage is used
to gradually denoise and recover the original sample.
Stochastic differential equations (SDE) [35], noise
conditioned score networks (NCSN) [33], and denoising
diffusion probabilistic models (DDPM) [34], are
currently representative frameworks in this category of
picture generating techniques.

Denoising diffusion probabilistic models:
DDPM includes several minor phases in its diffusion
stage. Gaussian noise marginally taints a data sample,
such an image, at each stage. We have x0 ~q(x0) if x0 is
an original image and q(x0) is the original distribution of
x0. Following each diffusion phase, a series of
progressively corrupted images x1, x2,..., XT can be
calculated using the Markovian process as follows:
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Where N(x; p,0) denotes a Gaussian
distribution with mean p and covariance o, T is the total
number of noising steps, and Bt €(0,1) is a hyper-
parameter regulating the wvariance of incremental
Gaussian noise. By parametrising at = 1-ft and  at=t
i=1 ai, we obtain xT turns into an isotropic Gaussian
distribution when T —o. To recover an original image,

DDPM completes a denoising process in its reverse stage
[37], states that if Bt is small, then every step q(xt—1|xt)
is also a Gaussian distribution. Next, we may estimate
the mean pbxt and the covariance X0(xt) by training a
neural network p to mimic each reserve diffusion step:
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Where the density function of XT is denoted by p(xT). The reverse step is tractable conditioned on xt and x0, per [34]:

T—1
Lvip=Lo+ Y Li+Lr, (10)

t=1
Lo = —log pa(xolz1), (1T)
Ly = KL(q(z¢—1|7s, 70)||po(ws—1]7¢)), (12)
L = KL(q(zr|zo)|pe(zT)), (13)

Optimising the variational lower bound (VLB)
is the goal of training the noise estimation network €0
(added noise €t in xt):

Where the Kullback-Leibler divergence
between two probability distributions is indicated by the

letter KL. Because q(xT|x0) has no learnable parameters
and xT is a Gaussian noise, LT is constant and may be
disregarded.
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Table 1: Both sampling & Training Method of our Conditional DDPM Proposal

Algorithm 1 Training

Algorithm 2 Sampling

l: repeat

2 (25,y") ~ plz,y)

ot~ U{L..., T}

4 e~ N(0,)

5: Take gradient descent step on

Vlles — eg(y*, Varzh + V1 = age, t)]|?

6: until converged

Require: N: Number of steps

l:xp ~ N(U, I}

2forv=N,...,1do

3 2~ NOI)ifi>1else 2=0

4 oz = \/%(r, - %Eg(’y, zi,t)) + 0;2
5: end for

6: return x

L0 is calculated from N(x0; uf(x1,1),£6(x1,1)) in [34], and the loss term in (12) can be simplified and reparameterized as:

Tt = Ty—1 + %VI logp(z) + /7w, Vt € {1,...,T}, (16)

simple =
L =Ep1, 1,06 || €6 — €0(vV/ o

(14)

+ \/1 — dtCt, t)”z]

The final simplified objective function is
c.s"i.mple = E.:implc + C7 (15)

Where C is a constant that is unaffected by the
parameter vector 6. 2) Noise conditioned score network:
Langevin dynamics uses only the score function Vxlog
pt(x) to generate samples from a probability density
function p(x). With 7 serving as a prior distribution and
a fixed step size y >0, the sampling procedure utilising
the Langevin technique can be written as follows: where
C is a constant that is unaffected by the parameter vector

0. 2) Noise conditioned score network: Langevin
dynamics uses only the score function Vxlog pt(x) to
generate samples from a probability density function
p(x). With & serving as a prior distribution and a fixed
step size y >0, the sampling procedure utilising the
Langevin technique can be written as follows:

ﬁsm = Ea:wp(w)”SO(x) - vl logp(?t)H% (17)

Where ot is a member of N(0,I). When T
approaches oo and y — 0, the distribution of xT = p(x).
To estimate the score, a neural network s6 trained so that
sO(x,t) = Vxlog pt(x). Ideally, score matching based on
the following goal function can be used to train the
network.

However, because it is difficult to determine the
score Vxlog p(x), equation (17) is difficult to optimise. In

order to get around this problem, Song et al., [33],
suggested using Gaussian noises at various scales to alter
the original data distribution: 61 <62 < - € oT so that
pol (x) =p(x0) and poT(x) =N(0,I). A score estimate
NCSN is  then  trained: sO(x,0t) =Vxlog
pot(x),vte{l,...,T}. Next, we have :
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vu:f IngUp_ (TI|T) - —
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g

Combining (17) and (18) on all (0;)_,, we have

T
1
Easm :f Z /\(O-t )E'p(:l.‘)]E;u ~po, (T|x) ||Sf} (:I:fr gi)

t=1
Iy — T

2
o |

Where the weighting factor is A(ct).

The Stochastic Differential Equation

(SDE) framework gradually converts the initial
data distribution into a Gaussian distribution in the
forward stage, much like DDPM and NCSN. The SDE
approach deals with a continuous process, in contrast to

dr = f(x,t) - dt + g(t) -

Where f and g are the drift and diffusion
coefficients, respectively, and t~U([0,T]), where o is the

(19)

the other two approaches that divide the diffusion
process into numerous discrete steps. Thus, the SDE
approach can be considered as a generalisation of DDPM
and NCSN methods. Let us use pt(x) for the probability
density function of x(t), and pst(x(t)|x(s)) for the
transition kernel from x(s) to x(t), where O s :

dw, (20)

Brownian motion. We also have the related reverse-time
SDE:

dx = [f(z,t) + g(t)* - Vi logpy(z)]dt + g(t)dw,  (21)

Where t ~U([T,0]), "® denotes the Brownian
motion when time is reversed, and Vxlog pt(x) is the
scoring function of the data distribution pt(x). In order

‘C;,kism =K [)\(t)IEilf(O)E:IT(t)|.’1‘(0) ” S0 (Itv IL)
— V) 1og po (x(t)|x(0)) [I3],

where x(0)~ pO(x), t ~U(0,T]), x(t)~
pOt(x(t)[x(0)), and A(t) is a positive weighting function.
In [22], the original score is substituted by Vx(t) log
pOt(x(t)[x(0)), as suggested in [38].

METHODOLOGY
Data

This study used co-registrated T2w MRI and
CT image pairings from 19 individuals from the Gold
Atlas male pelvic dataset [39]. Three distinct
departments were used to get the data. CT scans with
pixel sizes ranging from 0.98mmx0.98mm to
Immx1mm were acquired using a Siemens Somantom
Definition AS+ scanner, a Toshiba Aquilion scanner, and
a Siemens Emotion 6 scanner. A Siemens scanner with
the TSE sequence, a GE Discovery 750w scanner with
the FRFSE sequence, and a GE Signa PET/MR scanner
with the FRFSE sequence were used to scan T2w MR

for sB(x,t) = Vxlog pt(x), a neural network s is trained to
estimate the score. The continuous form of (19) is the
objective function, which may be written as :

(22)

images. The pixel sizes ranged from 0.875mm x
0.875mm to 1.1mm x 1.1mm. Two patients with 135
image pairs were chosen at random for testing, and 17
patients with 1,416 image pairs were chosen for training.
This study's image matrices are all 512. Every image was
pre-processed for pixel intensity unification prior to
training.

DDPM Conditioned

Here, we extend the conditional DDPM
proposed by Saharia et al., [40], to map across different
imaging modes (CT and MRI) in order to implement
image synthesis between CT and MRI. This allows us to
construct  diffusion and score-matching models
conditioned on T2w images, rather than working within
the same imaging mode (photographs). Our objective
function of (14) is as follows, given the co-registered CT
and T2w MRI pairs (xi,yi) K i=1, where K is the number
of image pairs in the dataset:
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simple = .14
L, g :Etw[l,T].l‘o.et [ller — ea(vVarzg
+ V1 — G, y, 1)|1%).

(23)

Beginning with a Gaussian noise XT ~ N(0,1), the sampling procedure is a reverse Markovian process. The reverse

procedure of (6) and (9) can be changed as :

Q(ﬂgt—l‘mtv Lo, y) = N(:Et—l; [L(zta Lo, y)7 Bt ' I)a (24)

1

fo(xe,y,t) = (xr —

Jar

Table 1 | contains a list of the updated DDPM
training and sample protocols. For the modified DDPM,
there were 1,000 diffusion steps and 1,000 sampling
steps. In order to denoise the reverse diffusion process,
UNet [41], was used.

SDE Conditioned

Under the direction of a condition of interest,
the reverse-time SDE should be solved in order to get the
necessary sampling data. Classifier-free and classier-
guidance methods are two ways to enforce a
requirement, either softly or aggressively. According to
Song et al., [35], the classifier-free technique conducts
network training in a supervised fashion and includes a
condition in the diffusion model training procedure. The
classifier-guidance strategy is unsupervised, in contrast
to the classifier-free approach. Using a proximal

dz = o' - dw,

1—at

V1—a,

€o(zt,y,t)). (25)

optimisation step based on a physical measurement
model for medical imaging, such as the Radon and
Fourier transforms, Song et al., [42], trained a network
for unconditional score estimation before including
conditional information into the sampling procedure. In
order to control the reverse diffusion process of a pre-
trained unconditional diffusion model, Dharwal et al.,
[43], and Liu et al., [44], added a classifier and utilized
its gradients. T2w MRI images are used as the training
condition in this investigation. Stated differently, we
oversee both the forward and backward diffusion
methods. Specifically, we adopted the variance
exploding (VE) SDE setup described in the study [35],
with f= 0 and g= ot. Given the original expression of g(t)
=d[c2 (t)] dt and c(0) = 0, we have o(t) =62t —1 2 log ©.
Therefore, equation (20) can be rewritten as follows:

(26)

pot(z(t)]x(0)) = N(2(t); 2(0), o(2) - T), (27)

dsm =Et[A)Ea(0)Ee(t)jeo)llse(z(t),y, 1)

3 x(t) — x(0) (28)
o(t)
The reverse-time SDE of (21) can be expressed as
dr = —c*sp(x(t),y, t)dt + otdw. (29)
where t ~ U([0,T]). Since the perturbation formula is  Vx()pOtx()x(0)) = —x(t)-x(0) o(t).

kernel is Gaussian, its gradient is pOt(x(t)[x(0)). The

Consequently, the objective function turns into:
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CT

Figure 1: Results of reverse diffusion utilising various sampling techniques are shown in Fig. 1.

CT picture serves as the ground truth and a T2w
MR image as the condition in the first row. Results from
the DDPM, ODE, EM, and PC sampling methods are
shown in the second through fifth rows, respectively.

The reverse-time SDE is solved numerically
after a sample xT is drawn from the prior distribution pT
~N(x(0),0(T)'I) in order to sample from the time
dependent score-based model sO(x(t),yt). We can
approximate the prior distribution to pT ~N(0,6(T) I
when o(T) is big since the mean value of the prior

distribution is near 0. Three sampling methods—the
Euler-Maruyama (EM), Prediction-Corrector (PC), and
probability flow ordinary differential equation (ODE)
methods—were applied in this investigation.

The Euler-Maruyama Technique

A straightforward discretisation technique is
used in the EM approach to solve the reverse-time SDE
of (29), substituting a Gaussian noise z~N(0,At-I) for dt
and a tiny increment At for d w. Next, we have:

Ti_nr = Tt + 02lsg(x(t), y, t) At + o'V Atz (30)

where z; ~ N(0,1).

The Prediction-Correction Technique

The PC sampling technique switches between
the prediction and correction phases in the prediction-
correction approach. Any numerical solver for the
reverse-time SDE with a set discretisation approach,

such the EM method of (30), can serve as the predictor.
Any score-based Markov Chain Monte Carlo technique,
including annealed Langevin dynamics, can be used as
the corrector. A Langevin step size y must be determined
in order to implement annealed Langevin dynamics:
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2
HSQ(QEi, Y, Ui) H2

where z~N(0,I) and r are the signal-to-noise
ratios. We can sample in accordance with the Langevin
dynamics of (16) after determining the Langevin step
size vy.

The ODE Approach for Probability Flow

For simplicity's sake, we refer to the probability
flow ODE approach as ODE in this study. Any SDE in
the form of (20) has a corresponding ODE.

de = [f(x,0) ~ ot Vologp(@)dt,  (2)

Which is identical to the SDE's marginal
probability density pt(t) trajectory. Therefore,
calculating the aforementioned ODE in the reverse time
direction is identical to sampling by solving the reverse-
time SDE. The ODE sampling procedure begins with

1
dr = —=o?tsy

2

To solve (33), we employed the Explicit Runge-
Kutta technique of order 5(4). Table Il contains a list of
the three approaches' training and sample protocols. To
estimate scores, we employed UNet. We set the total

deriving XT from pT, much like the EM and PC methods
do. After that, we Obtain a sample from pO by integrating
the ODE in the opposite time direction. The ODE
equation in this instance is expressed as follows:

(x(t),y, t)dt. (33)

number of sampling steps to 1,000 for each of the
comparative sampling techniques. Specifically, 500
prediction steps and 500 corrective steps were used in the
PC sampling.

Figure 2: Monte Carlo sampling results are compared using several reverse techniques. The findings conditioned
on the same MR picture using four distinct sampling procedures are displayed in the first five rows,
correspondingly. The results, together with their pixel-by-pixel standard deviation maps, are averaged across all
10 MC sample results in the bottom row. Interestingly, every image is displayed in the [0, 1] range, with the
exception of the standard deviation maps, which are displayed in the [0, 0.5] range.
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Additional Techniques for Comparison

Additionally, we contrasted the diffusion and
score-matching models with models based on CNN and
GAN. UNet was taught to reduce MSE for CNN. With

UNet as the generator and MSE as the data fidelity
metric, Wasserstein distance and gradient penalty
(WGAN-GP) were added to GAN [45].

a
@) SSIM
mm PSNR
0.85 |
0.80
s
%075
"
0.70
0.65
CNN WGAN-GP DDPM  ODE
(b)
»0.0100]
(=
£
§ 00075 |
c
-
3 0.0050
°
3
0.00251
0.0000™ 1 5oM  oDE EM PC

EM

Average sampling time (s) -

[N)
'
o

PC DDPM-M ODE-M

N @
o o

=]
o

0" DbPMm

ODE EM PC

Figure 3: Statistical analysis. (a) The average SSIM deviations; (b) the corresponding average model uncertainty.
and PSNR scores from several CT image sampling techniques that were generated; and (c) the average utilising
various techniques, where the error bars display typical sample times for a slice using various sampling
techniques

Details of Implementation

We continuously employed UNet of the same
architecture (UNet of CNN and WGAN-GP without
time-embedding) and the aAdam optimiser with a
learning rate of 10—4, betas of 0.9 and 0.999, and eps of
10-8 for all the methods in our experiments, including
conditional DDPM, conditional SDE, CNN, and
WGAN-GP. After the loss did not drop by 1% in
comparison to the average loss for the twenty preceding
epochs, the training procedure was terminated after at
least 100 epochs. Two was the set batch size. A 24GB
Nvidia RTX Titan GPU running PyTorch 1.11 was used
for all of the experiments. Following the release of this
paper, we will post all of the study's codes to Github. The
final outputs of the conditional DDPM and conditional
SDE methods were susceptible to random fluctuations
because noises were present during the sampling
procedures. Therefore, we used the Monte Carlo (MC)
approach to further examine the uncertainty of the
diffusion and score-matching models. Ten copies of each
target CT image were produced. We logged every
sampling result in each instance and averaged the ten
outcomes to get the MC result. Using the DDPM, ODE,
EM, and ODE sampling techniques, we represent these
averaged results as DDPM-M, ODE-M, EM-M, and PC-
M, respectively. By examining the standard deviation
map of the 10 sampling data in each configuration, the
model uncertainty was exposed.

RESULTS

In order to assess picture quality and structural
similarity index signal-to-noise ratio (PSNR) metrics, we
used the measure (SSIM) and peak in this investigation.

Results of Diffusion and Score-Matching

Fig. 1 compares the intermediate outcomes
from the reverse process using the DDPM, EM, PC, and
ODE methods. It is discovered that all four approaches,
conditioned on the corresponding T2w MR picture,
ultimately produce a desired CT image (x0) from a
Gaussian noise (x1,000). Noise is progressively
eliminated as the reverse diffusion process continues,
giving an image a more realistic appearance.

Estimation of Model Uncertainty

MC results using various sampling techniques
are displayed in Fig. 2. It seems that DDPM generates
outcomes with the highest SSIM and PSNR scores
whereas the ODE approach pro- duces results with the
lowest scores. For those results obtained by averaging all
ten MC samples conditioned on the same T2w MR
image, ODE, EM, and PC techniques yield significantly
better synthetic CT images with higher SSIM and PSNR
scores than the equivalent individual result. The PC and
EM approaches produce smaller standard deviations than
the DDPM and ODE approaches in terms of the standard
deviation map. Model uncertainty scores for the
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sampling techniques are displayed quantitatively in Fig.
3(b). These scores were calculated by averaging over a
standard deviation map, and they reveal that EM and PC

had lower model uncertainty scores than DDPM and
ODE.

Figure 4: Two image synthesis results employing various techniques are compared. The entire image is displayed

in the first row for each example, while the zoomed-in areas, delineated by red and green boxes, respectively, are
displayed in the second and third rows.

Comparing GAN and CNN

We contrasted CNN and WGAN-GP based
models on image synthesis between CT and MRI with
diffusion and score-matching models. Figure 4 displays
the qualitative findings. It is discovered that the CNN
approach frequently produces results that are excessively
smoothed. The WGAN-GP approach tends to produce
artefact’s even though it produces findings with details.
There are significant artefact’s on the left side of the
spherical bone structure created by WGAN-GP in the
bottom row of Figure 4. However, faithful details can be
found in the diffusion and score-matching outcomes. Out
of the diffusion and score-matching outcomes, the
DDPM and PC techniques exhibit higher SSIM scores
than the other two sampling methods, while the ODE
approach produces less favourable results than the other
three sampling methods. In terms of information fidelity,
SSIM, and PSNR scores, it is discovered that all four
types of averaged results—DDPM-M, ODE-M, EM-M,
and PC-M—are superior to the corresponding individual
sample results. In terms of SSIM and PSNR, the
quantitative results in Fig. 3(a) likewise show that
DDPM-M, ODE-M, EM-M, and PC-M scored higher
than DDPM, ODE, EM, and PC, respectively. We also
looked into each sampling method's inference speed. The
time required to create a 512x512 synthetic CT picture
using each sampling technique is contrasted in Fig. 3(c).
Out of the four approaches, the ODE method is the

fastest. While the PC approach is the slowest, the sample
times for DDPM and EM are similar.

DiscussioN AND CONCLUSION

The training and sample procedures in this work
use DDPM, which is time-discrete. SDE, on the other
hand, is time-continuous during training and time-
discrete during sampling. We looked into the DDPM and
SDE techniques for creating fake CT images from
provided T2w MRI data. Four distinct sample
techniques—three SDE-based and one DDPM-based—
were contrasted. Our findings show that all four
sampling techniques are capable of producing realistic
CT pictures and eliminating noise. Excellent results can
be obtained for all four approaches after averaging the
results of several Monte Carlo samplings. The ODE
approach yields lower-quality sample results, whereas
the other three approaches yield results that are similarly
good. But when it comes to sampling speed, the PC
technique is the slowest and the ODE method is
noticeably faster than the others. In practice, sampling
speed and quality must be balanced according to the
needs of each application. We would suggest the EM
approach as a solid option for SDE-based sampling due
to its good sampling quality and comparatively quick
sampling speed. We conclude that the time-discrete
training may be a significant contributing factor to the
DDPM model's uncertainty when examining the model
uncertainty in Fig. 3(b) and the standard deviation maps
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in Fig. 2, which show that DDPM has a higher model
uncertainty than SDE-based sampling techniques.

We also assume that DDPM would behave
more like a time-continuous model with less model
uncertainty if the number of steps in the diffusion and
reversal processes were increased. We have contrasted
the diffusion and score-matching outcomes with those
based on CNN and GAN. Because MSE is used as the
objective function, CNN findings are more likely to be
over-smoothed than other results [46]. Although GAN
results are more detailed than CNN results, they are
tainted by artefact’s. These artefact’s could result from
the GAN model's low robustness and strong propensity
for hallucinations. In contrast to CNN and GAN models,
diffusion and score-matching models have the
fundamental capacity to produce high-quality images
and fit data distributions.

Nevertheless, diffusion and score-matching
models have a well-known drawback: their reliance on a
lengthy Markov chain for generation leads to a
comparatively slow pace. We will continue investigating
computational methods to greatly improve the sample
procedures as a future course. A few methods have
already been devised for that purpose [47-51], although
the speed of diffusion sampling still lags well behind
CNN and GAN inference. The unsupervised technique is
more beneficial in medical imaging applications than the
supervised approach since it does not require paired
pictures. Nevertheless, there are drawbacks to the current
unsupervised diffusion and score-matching models. The
limitations in Dharwal and Liu's approaches [43, 44], are
insufficient to access particular structures or contents in
the images that are produced. However, Song's technique
[42], has too strict of requirements and is difficult to use
for CT-MRI synthesis because of the low degree of
similarity between CT and MRI data. We will investigate
ways to balance these conditional constraints for high-
quality CT-MRI synthesis in subsequent research.

Finally, for image synthesis between CT and
MRI, we have modified the newly developed diffusion
and score-matching models. To sample CT pictures
conditioned on an MRI image, the four strategies—
DDPM, ODE, EM, and PC—have been implemented.
Results produced with traditional CNN and GAN models
have been favourably compared with the resulting CT
images utilising various sampling techniques.
Additionally, the diffusion and score-matching models'
uncertainties have been measured. On the basis of this
work, additional research is underway.
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