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Abstract: MRI and CT are the two most widely used medical imaging techniques. 

Often, doctors need images from both modalities to diagnose conditions accurately 

and plan treatments like radiation therapy. However, using both MRI and CT can 

be costly, and it often results in misaligned images. A practical alternative is to use 

computational methods to convert images from one modality to another—

particularly converting MRI images into CT images. In this study, we explore a 

deep learning approach using diffusion models and score-matching techniques to 

address this challenge. Specifically, we adapt denoising diffusion probabilistic 

models and score-matching strategies, apply four different sampling methods, and 

compare their performance with that of traditional models like generative 

adversarial networks (GANs) and convolutional neural networks (CNNs). Our 

results show that diffusion and score-matching models generate synthetic CT 

images with higher quality than CNN and GAN approaches. We also assess the 

uncertainty in these models using Monte Carlo simulations and further improve the 

final image quality by averaging the Monte Carlo outputs. Overall, our research 

suggests that diffusion and score-matching models not only rival CNNs and GANs 

in generating cross-modality medical images but also offer a more mathematically 

grounded and reliable framework.  

Keywords: Computed Tomography, Magnetic Resonance Imaging, Image 

Synthesis, Uncertainty Estimation, Diffusion Model, and Score-Matching Model. 
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License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
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INTRODUCTION 
The two most popular medical imaging 

techniques are computed tomography (CT) and magnetic 

resonance imaging (MRI). While CT is the preferred 

technique for imaging hard tissues like bones and the 

interfaces between air, bone, and soft tissues, MRI 

provides excellent contrast images of soft tissues like 

organs and arteries. Clinical practice frequently uses 

multi-modality imaging using MRI and CT because of 

their complementing characteristics. For instance, 

radiation necessitates both CT and MRI since MRI 

defines soft tissues and malignancies, while CT offers an 

electron density distribution that is essential for 

treatment planning [1]. While CT and MRI scans are 

currently done separately, which is not only costly but 

also causes nonrigid misalignment between MRI and CT 

pictures, simultaneous CT-MRI is still a study topic [2]. 

This issue might be resolved by creating a simultaneous 

CT-MRI device, and we have carried out research to 

suggest the best possible designs for such a device [3, 4]. 

 

One practical solution to the above described 

issue is medical image synthesis. This method simulates 

a mapping between a source image and an unidentified 

target image. Traditional image synthesis techniques 

concentrate on using a variety of models, including 

random forest and dictionary learning, to extract expert-

defined features [5]. These techniques, however, are only 

applicable to manually created feature representations. 

https://www.easpublisher.com/
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Deep learning has recently demonstrated enormous 

promise and remarkable success in medical image 

processing tasks, including artefact reduction [10, 11], 

super-resolution [8, 9], and denoising [6, 7]. Deep neural 

networks generate better feature representations and 

learn features in a data-driven manner than conventional 

techniques. Recent years have seen the publication of 

numerous deep learning-based cross-modality medical 

picture synthesis research, the majority of which are 

based on generative adversarial networks (GANs) and 

convolutional neural networks (CNNs) [12-32]. A new 

generating technique that has garnered a lot of interest in 

the field of medical imaging is diffusion and score-

matching models. High-fidelity, realistic natural images 

can be produced by these models [33-35]. Diffusion and 

score-matching models are analytically principled, 

simple to train, and provide state-of-the-art image quality 

when compared to other generative model types like 

GANs and variational auto-encoders, which are 

challenging to train and interpret and don't always 

produce satisfactory image quality. Remarkably, a 

growing body of research indicates that in several image 

production tasks, diffusion and score-matching models 

outperform GANs and variational auto-encoders [36]. 

 

With a focus on mapping from MRI to CT 

images, we suggest using diffusion and score-matching 

models for image conversion between CT and MRI in 

this article. Our analysis is based on two models: the 

model that solves the stochastic differential equation 

(SDE) [35], and the denoising diffusion probabilistic 

model (DDPM) [34]. These models are contrasted with 

consistent network architecture CNN and GAN models. 

By averaging these random samples, we may further 

quantify the diffusion models' uncertainties from Monte-

Carlo sampling results and get better results. 

 

Synthesis of Deep Medical Images 

Researchers used deep learning for medical 

imaging problems after being inspired by its success in 

the computational vision area. CNN and GAN models 

were suggested for medical picture synthesis. Nie et al., 

[12], suggested a 3D fully convolutional network to 

create pelvic CT images from the matching MRI pictures 

in order to convert images between MRI and CT 

modalities. A cascaded GAN model with several 

consecutive generators and discriminators was then 

suggested [16]. A CNN model based on an encoder-

decoder backbone was created by Bahrami et al., [27], 

who also noted that the suggested model demonstrated a 

rapid rate of convergence with a small number of training 

subjects. Leynes et al., [14], and Han et al., [13], both 

used UNet to create synthetic CT images. Tao et al., [30], 

and Emami et al., [17], developed GAN models using 

ResNet. A conditional GAN was constructed by Boni et 

al., [28] using multi-center pelvic datasets to produce 

synthetic CT images. Additionally, CycleGAN was used 

to create synthetic MRI and CT images by Chartsias et 

al., [15], Hiasa et al., [18], Zhang et al., [19], and Cai et 

al., [25]. When converting brain CT scans into MRI 

pictures, Li et al., [26], evaluated the effectiveness of the 

UNet, cycleGAN, and pix2pix models and discovered 

that UNet performed the best out of the three. 

 

A conditional GAN with a fully convolutional 

network for liver PET image synthesis was proposed by 

Ben-Cohen et al., [20], for image synthesis between CT 

and PET modalities. In order to minimise a complex 

objective function, Armanious et al., [21], constructed a 

model named MedGAN using cascaded encoder-

decoders. A multi-channel GAN model that can encode 

semantic information was created by Bi et al., [22]. Ben-

Cohen et al., [29], improved lesion identification by 

creating synthetic PET images using a GAN model with 

a fully connected network. Wei et al., [24], suggested a 

sketcher-refiner approach using two cascaded GANs for 

image synthesis between MRI and PET modalities. The 

initial GAN produces rough artificial images. The results 

are refined by the second GAN. Choi et al., [23], used 

UNet as the generator to create a GAN model for MRI 

image synthesis. A model named BPGAN was 

introduced by Zhang et al., [32], to create synthetic brain 

PET images. The bidirectional mapping generative 

adversarial network (BMGAN), a 3D end-to-end 

synthesis model created by Hu et al., [31], jointly 

optimised the latent vector and picture context for brain 

MRI-to-PET image synthesis. 

 

Models of Diffusion and Score-Matching 

With remarkable generative capabilities for a 

variety of tasks, including image generation, super-

resolution, and picture in-painting, diffusion and score-

matching models are emerging as the most promising 

deep generative models [36]. A forward stage is typically 

used to add noise gradually, while a reverse stage is used 

to gradually denoise and recover the original sample. 

Stochastic differential equations (SDE) [35], noise 

conditioned score networks (NCSN) [33], and denoising 

diffusion probabilistic models (DDPM) [34], are 

currently representative frameworks in this category of 

picture generating techniques. 

 

Denoising diffusion probabilistic models: 

DDPM includes several minor phases in its diffusion 

stage. Gaussian noise marginally taints a data sample, 

such an image, at each stage. We have x0 ∼q(x0) if x0 is 

an original image and q(x0) is the original distribution of 

x0. Following each diffusion phase, a series of 

progressively corrupted images x1, x2,..., xT can be 

calculated using the Markovian process as follows: 
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Where N(x; µ,σ) denotes a Gaussian 

distribution with mean µ and covariance σ, T is the total 

number of noising steps, and βt ∈(0,1) is a hyper-

parameter regulating the variance of incremental 

Gaussian noise. By parametrising αt = 1−βt and ¯ αt = t 

i = 1 αi, we obtain xT turns into an isotropic Gaussian 

distribution when T →∞. To recover an original image, 

DDPM completes a denoising process in its reverse stage 

[37], states that if βt is small, then every step q(xt−1|xt) 

is also a Gaussian distribution. Next, we may estimate 

the mean µθxt and the covariance Σθ(xt) by training a 

neural network pθ to mimic each reserve diffusion step: 

 

 

 
 

Where the density function of xT is denoted by p(xT). The reverse step is tractable conditioned on xt and x0, per [34]: 

 
 

Optimising the variational lower bound (VLB) 

is the goal of training the noise estimation network ϵθ 

(added noise ϵt in xt): 
 

Where the Kullback-Leibler divergence 

between two probability distributions is indicated by the 

letter KL. Because q(xT|x0) has no learnable parameters 

and xT is a Gaussian noise, LT is constant and may be 

disregarded. 
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Table 1: Both sampling & Training Method of our Conditional DDPM Proposal 

 
 

L0 is calculated from N(x0; µθ(x1,1),Σθ(x1,1)) in [34], and the loss term in (12) can be simplified and reparameterized as: 

 

 
 

Where C is a constant that is unaffected by the 

parameter vector θ. 2) Noise conditioned score network: 

Langevin dynamics uses only the score function ∇xlog 

pt(x) to generate samples from a probability density 

function p(x). With π serving as a prior distribution and 

a fixed step size γ >0, the sampling procedure utilising 

the Langevin technique can be written as follows: where 

C is a constant that is unaffected by the parameter vector 

θ. 2) Noise conditioned score network: Langevin 

dynamics uses only the score function ∇xlog pt(x) to 

generate samples from a probability density function 

p(x). With π serving as a prior distribution and a fixed 

step size γ >0, the sampling procedure utilising the 

Langevin technique can be written as follows: 

 

 
 

Where ωt is a member of N(0,I). When T 

approaches ∞ and γ → 0, the distribution of xT = p(x). 

To estimate the score, a neural network sθ trained so that 

sθ(x,t) = ∇xlog pt(x). Ideally, score matching based on 

the following goal function can be used to train the 

network. 

 

However, because it is difficult to determine the 

score ∇xlog p(x), equation (17) is difficult to optimise. In 

order to get around this problem, Song et al., [33], 

suggested using Gaussian noises at various scales to alter 

the original data distribution: σ1 < σ2 < ···� σT so that 

pσ1 (x) ≈p(x0) and pσT(x) ≈N(0,I). A score estimate 

NCSN is then trained: sθ(x,σt) ≈∇xlog 

pσt(x),∀t∈{1,...,T}. Next, we have :  
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Where the weighting factor is λ(σt). 

 

The Stochastic Differential Equation 

 (SDE) framework gradually converts the initial 

data distribution into a Gaussian distribution in the 

forward stage, much like DDPM and NCSN. The SDE 

approach deals with a continuous process, in contrast to 

the other two approaches that divide the diffusion 

process into numerous discrete steps. Thus, the SDE 

approach can be considered as a generalisation of DDPM 

and NCSN methods. Let us use pt(x) for the probability 

density function of x(t), and pst(x(t)|x(s)) for the 

transition kernel from x(s) to x(t), where 0 s :  

 

 
 

Where f and g are the drift and diffusion 

coefficients, respectively, and t∼U([0,T]), where ω is the 

Brownian motion. We also have the related reverse-time 

SDE: 

 

 
 

Where t ∼U([T,0]), ˆω denotes the Brownian 

motion when time is reversed, and ∇xlog pt(x) is the 

scoring function of the data distribution pt(x). In order 

for sθ(x,t) = ∇xlog pt(x), a neural network sθ is trained to 

estimate the score. The continuous form of (19) is the 

objective function, which may be written as : 

 

 
 

where x(0)∼ p0(x), t ∼U([0,T]), x(t)∼ 

p0t(x(t)|x(0)), and λ(t) is a positive weighting function. 

In [22], the original score is substituted by ∇x(t) log 

p0t(x(t)|x(0)), as suggested in [38]. 

 

METHODOLOGY 
Data 

This study used co-registrated T2w MRI and 

CT image pairings from 19 individuals from the Gold 

Atlas male pelvic dataset [39]. Three distinct 

departments were used to get the data. CT scans with 

pixel sizes ranging from 0.98mm×0.98mm to 

1mm×1mm were acquired using a Siemens Somantom 

Definition AS+ scanner, a Toshiba Aquilion scanner, and 

a Siemens Emotion 6 scanner. A Siemens scanner with 

the TSE sequence, a GE Discovery 750w scanner with 

the FRFSE sequence, and a GE Signa PET/MR scanner 

with the FRFSE sequence were used to scan T2w MR 

images. The pixel sizes ranged from 0.875mm × 

0.875mm to 1.1mm × 1.1mm. Two patients with 135 

image pairs were chosen at random for testing, and 17 

patients with 1,416 image pairs were chosen for training. 

This study's image matrices are all 512. Every image was 

pre-processed for pixel intensity unification prior to 

training. 

 

DDPM Conditioned 

Here, we extend the conditional DDPM 

proposed by Saharia et al., [40], to map across different 

imaging modes (CT and MRI) in order to implement 

image synthesis between CT and MRI. This allows us to 

construct diffusion and score-matching models 

conditioned on T2w images, rather than working within 

the same imaging mode (photographs). Our objective 

function of (14) is as follows, given the co-registered CT 

and T2w MRI pairs (xi,yi) K i=1, where K is the number 

of image pairs in the dataset: 
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Beginning with a Gaussian noise xT ∼ N(0,I), the sampling procedure is a reverse Markovian process. The reverse 

procedure of (6) and (9) can be changed as :  

 

 
 

Table 1 I contains a list of the updated DDPM 

training and sample protocols. For the modified DDPM, 

there were 1,000 diffusion steps and 1,000 sampling 

steps. In order to denoise the reverse diffusion process, 

UNet [41], was used. 

 

SDE Conditioned 

Under the direction of a condition of interest, 

the reverse-time SDE should be solved in order to get the 

necessary sampling data. Classifier-free and classier-

guidance methods are two ways to enforce a 

requirement, either softly or aggressively. According to 

Song et al., [35], the classifier-free technique conducts 

network training in a supervised fashion and includes a 

condition in the diffusion model training procedure. The 

classifier-guidance strategy is unsupervised, in contrast 

to the classifier-free approach. Using a proximal 

optimisation step based on a physical measurement 

model for medical imaging, such as the Radon and 

Fourier transforms, Song et al., [42], trained a network 

for unconditional score estimation before including 

conditional information into the sampling procedure. In 

order to control the reverse diffusion process of a pre-

trained unconditional diffusion model, Dharwal et al., 

[43], and Liu et al., [44], added a classifier and utilized 

its gradients. T2w MRI images are used as the training 

condition in this investigation. Stated differently, we 

oversee both the forward and backward diffusion 

methods. Specifically, we adopted the variance 

exploding (VE) SDE setup described in the study [35], 

with f = 0 and g= σt. Given the original expression of g(t) 

= d[σ2 (t)] dt and σ(0) = 0, we have σ(t) =σ2t −1 2 log σ. 

Therefore, equation (20) can be rewritten as follows: 

 

 

 
 

where t ∼ U([0,T]). Since the perturbation 

kernel is Gaussian, its gradient is p0t(x(t)|x(0)). The 

formula is ∇x(t)p0t(x(t)|x(0)) = −x(t)−x(0) σ(t). 

Consequently, the objective function turns into: 
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Figure 1: Results of reverse diffusion utilising various sampling techniques are shown in Fig. 1. 

 

CT picture serves as the ground truth and a T2w 

MR image as the condition in the first row. Results from 

the DDPM, ODE, EM, and PC sampling methods are 

shown in the second through fifth rows, respectively. 

 

The reverse-time SDE is solved numerically 

after a sample xT is drawn from the prior distribution pT 

∼N(x(0),σ(T)·I) in order to sample from the time 

dependent score-based model sθ(x(t),yt). We can 

approximate the prior distribution to pT ∼N(0,σ(T)·I 

when σ(T) is big since the mean value of the prior 

distribution is near 0. Three sampling methods—the 

Euler-Maruyama (EM), Prediction-Corrector (PC), and 

probability flow ordinary differential equation (ODE) 

methods—were applied in this investigation.  

 

The Euler-Maruyama Technique 

A straightforward discretisation technique is 

used in the EM approach to solve the reverse-time SDE 

of (29), substituting a Gaussian noise z∼N(0,∆t·I) for dt 

and a tiny increment ∆t for d¯w. Next, we have: 

 

 
 

The Prediction-Correction Technique 

The PC sampling technique switches between 

the prediction and correction phases in the prediction-

correction approach. Any numerical solver for the 

reverse-time SDE with a set discretisation approach, 

such the EM method of (30), can serve as the predictor. 

Any score-based Markov Chain Monte Carlo technique, 

including annealed Langevin dynamics, can be used as 

the corrector. A Langevin step size γ must be determined 

in order to implement annealed Langevin dynamics: 
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where z∼N(0,I) and r are the signal-to-noise 

ratios. We can sample in accordance with the Langevin 

dynamics of (16) after determining the Langevin step 

size γ. 

 

The ODE Approach for Probability Flow 

For simplicity's sake, we refer to the probability 

flow ODE approach as ODE in this study. Any SDE in 

the form of (20) has a corresponding ODE. 

 
 

Which is identical to the SDE's marginal 

probability density pt(t) trajectory. Therefore, 

calculating the aforementioned ODE in the reverse time 

direction is identical to sampling by solving the reverse-

time SDE. The ODE sampling procedure begins with 

deriving xT from pT, much like the EM and PC methods 

do. After that, we Obtain a sample from p0 by integrating 

the ODE in the opposite time direction. The ODE 

equation in this instance is expressed as follows: 

 

 
 

To solve (33), we employed the Explicit Runge-

Kutta technique of order 5(4). Table II contains a list of 

the three approaches' training and sample protocols. To 

estimate scores, we employed UNet. We set the total 

number of sampling steps to 1,000 for each of the 

comparative sampling techniques. Specifically, 500 

prediction steps and 500 corrective steps were used in the 

PC sampling. 

 

 
Figure 2: Monte Carlo sampling results are compared using several reverse techniques. The findings conditioned 

on the same MR picture using four distinct sampling procedures are displayed in the first five rows, 

correspondingly. The results, together with their pixel-by-pixel standard deviation maps, are averaged across all 

10 MC sample results in the bottom row. Interestingly, every image is displayed in the [0, 1] range, with the 

exception of the standard deviation maps, which are displayed in the [0, 0.5] range. 
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Additional Techniques for Comparison 

Additionally, we contrasted the diffusion and 

score-matching models with models based on CNN and 

GAN. UNet was taught to reduce MSE for CNN. With 

UNet as the generator and MSE as the data fidelity 

metric, Wasserstein distance and gradient penalty 

(WGAN-GP) were added to GAN [45]. 

 

 
Figure 3: Statistical analysis. (a) The average SSIM deviations; (b) the corresponding average model uncertainty. 

and PSNR scores from several CT image sampling techniques that were generated; and (c) the average utilising 

various techniques, where the error bars display typical sample times for a slice using various sampling 

techniques 

 

Details of Implementation 

We continuously employed UNet of the same 

architecture (UNet of CNN and WGAN-GP without 

time-embedding) and the aAdam optimiser with a 

learning rate of 10−4, betas of 0.9 and 0.999, and eps of 

10−8 for all the methods in our experiments, including 

conditional DDPM, conditional SDE, CNN, and 

WGAN-GP. After the loss did not drop by 1% in 

comparison to the average loss for the twenty preceding 

epochs, the training procedure was terminated after at 

least 100 epochs. Two was the set batch size. A 24GB 

Nvidia RTX Titan GPU running PyTorch 1.11 was used 

for all of the experiments. Following the release of this 

paper, we will post all of the study's codes to Github. The 

final outputs of the conditional DDPM and conditional 

SDE methods were susceptible to random fluctuations 

because noises were present during the sampling 

procedures. Therefore, we used the Monte Carlo (MC) 

approach to further examine the uncertainty of the 

diffusion and score-matching models. Ten copies of each 

target CT image were produced. We logged every 

sampling result in each instance and averaged the ten 

outcomes to get the MC result. Using the DDPM, ODE, 

EM, and ODE sampling techniques, we represent these 

averaged results as DDPM-M, ODE-M, EM-M, and PC-

M, respectively. By examining the standard deviation 

map of the 10 sampling data in each configuration, the 

model uncertainty was exposed. 

 

RESULTS 
In order to assess picture quality and structural 

similarity index signal-to-noise ratio (PSNR) metrics, we 

used the measure (SSIM) and peak in this investigation. 

 

Results of Diffusion and Score-Matching 

Fig. 1 compares the intermediate outcomes 

from the reverse process using the DDPM, EM, PC, and 

ODE methods. It is discovered that all four approaches, 

conditioned on the corresponding T2w MR picture, 

ultimately produce a desired CT image (x0) from a 

Gaussian noise (x1,000). Noise is progressively 

eliminated as the reverse diffusion process continues, 

giving an image a more realistic appearance. 

 

Estimation of Model Uncertainty 

MC results using various sampling techniques 

are displayed in Fig. 2. It seems that DDPM generates 

outcomes with the highest SSIM and PSNR scores 

whereas the ODE approach pro- duces results with the 

lowest scores. For those results obtained by averaging all 

ten MC samples conditioned on the same T2w MR 

image, ODE, EM, and PC techniques yield significantly 

better synthetic CT images with higher SSIM and PSNR 

scores than the equivalent individual result. The PC and 

EM approaches produce smaller standard deviations than 

the DDPM and ODE approaches in terms of the standard 

deviation map. Model uncertainty scores for the 
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sampling techniques are displayed quantitatively in Fig. 

3(b). These scores were calculated by averaging over a 

standard deviation map, and they reveal that EM and PC 

had lower model uncertainty scores than DDPM and 

ODE. 

 

 
Figure 4: Two image synthesis results employing various techniques are compared. The entire image is displayed 

in the first row for each example, while the zoomed-in areas, delineated by red and green boxes, respectively, are 

displayed in the second and third rows. 

 

Comparing GAN and CNN 

We contrasted CNN and WGAN-GP based 

models on image synthesis between CT and MRI with 

diffusion and score-matching models. Figure 4 displays 

the qualitative findings. It is discovered that the CNN 

approach frequently produces results that are excessively 

smoothed. The WGAN-GP approach tends to produce 

artefact’s even though it produces findings with details. 

There are significant artefact’s on the left side of the 

spherical bone structure created by WGAN-GP in the 

bottom row of Figure 4. However, faithful details can be 

found in the diffusion and score-matching outcomes. Out 

of the diffusion and score-matching outcomes, the 

DDPM and PC techniques exhibit higher SSIM scores 

than the other two sampling methods, while the ODE 

approach produces less favourable results than the other 

three sampling methods. In terms of information fidelity, 

SSIM, and PSNR scores, it is discovered that all four 

types of averaged results—DDPM-M, ODE-M, EM-M, 

and PC-M—are superior to the corresponding individual 

sample results. In terms of SSIM and PSNR, the 

quantitative results in Fig. 3(a) likewise show that 

DDPM-M, ODE-M, EM-M, and PC-M scored higher 

than DDPM, ODE, EM, and PC, respectively. We also 

looked into each sampling method's inference speed. The 

time required to create a 512x512 synthetic CT picture 

using each sampling technique is contrasted in Fig. 3(c). 

Out of the four approaches, the ODE method is the 

fastest. While the PC approach is the slowest, the sample 

times for DDPM and EM are similar. 

 

DISCUSSION AND CONCLUSION 
The training and sample procedures in this work 

use DDPM, which is time-discrete. SDE, on the other 

hand, is time-continuous during training and time-

discrete during sampling. We looked into the DDPM and 

SDE techniques for creating fake CT images from 

provided T2w MRI data. Four distinct sample 

techniques—three SDE-based and one DDPM-based—

were contrasted. Our findings show that all four 

sampling techniques are capable of producing realistic 

CT pictures and eliminating noise. Excellent results can 

be obtained for all four approaches after averaging the 

results of several Monte Carlo samplings. The ODE 

approach yields lower-quality sample results, whereas 

the other three approaches yield results that are similarly 

good. But when it comes to sampling speed, the PC 

technique is the slowest and the ODE method is 

noticeably faster than the others. In practice, sampling 

speed and quality must be balanced according to the 

needs of each application. We would suggest the EM 

approach as a solid option for SDE-based sampling due 

to its good sampling quality and comparatively quick 

sampling speed. We conclude that the time-discrete 

training may be a significant contributing factor to the 

DDPM model's uncertainty when examining the model 

uncertainty in Fig. 3(b) and the standard deviation maps 
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in Fig. 2, which show that DDPM has a higher model 

uncertainty than SDE-based sampling techniques. 

 

We also assume that DDPM would behave 

more like a time-continuous model with less model 

uncertainty if the number of steps in the diffusion and 

reversal processes were increased. We have contrasted 

the diffusion and score-matching outcomes with those 

based on CNN and GAN. Because MSE is used as the 

objective function, CNN findings are more likely to be 

over-smoothed than other results [46]. Although GAN 

results are more detailed than CNN results, they are 

tainted by artefact’s. These artefact’s could result from 

the GAN model's low robustness and strong propensity 

for hallucinations. In contrast to CNN and GAN models, 

diffusion and score-matching models have the 

fundamental capacity to produce high-quality images 

and fit data distributions. 

 

Nevertheless, diffusion and score-matching 

models have a well-known drawback: their reliance on a 

lengthy Markov chain for generation leads to a 

comparatively slow pace. We will continue investigating 

computational methods to greatly improve the sample 

procedures as a future course. A few methods have 

already been devised for that purpose [47–51], although 

the speed of diffusion sampling still lags well behind 

CNN and GAN inference. The unsupervised technique is 

more beneficial in medical imaging applications than the 

supervised approach since it does not require paired 

pictures. Nevertheless, there are drawbacks to the current 

unsupervised diffusion and score-matching models. The 

limitations in Dharwal and Liu's approaches [43, 44], are 

insufficient to access particular structures or contents in 

the images that are produced. However, Song's technique 

[42], has too strict of requirements and is difficult to use 

for CT-MRI synthesis because of the low degree of 

similarity between CT and MRI data. We will investigate 

ways to balance these conditional constraints for high-

quality CT-MRI synthesis in subsequent research. 

 

Finally, for image synthesis between CT and 

MRI, we have modified the newly developed diffusion 

and score-matching models. To sample CT pictures 

conditioned on an MRI image, the four strategies—

DDPM, ODE, EM, and PC—have been implemented. 

Results produced with traditional CNN and GAN models 

have been favourably compared with the resulting CT 

images utilising various sampling techniques. 

Additionally, the diffusion and score-matching models' 

uncertainties have been measured. On the basis of this 

work, additional research is underway. 
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