

Volume-2 | Issue-3 | March-2019 |

Research Article

Structural Analysis for a Composite Parallel Beam Structures Using QSE 7 Staad Pro Software in Accordance to BS 5950- 1 Advanced UK Beams

Khalid Abdel Naser Abdel Rahim MSc, BEng (Hons)

University of Coimbra, Portugal

*Corresponding Author Khalid Abdel Naser Abdel Rahim

Abstract: This technical paper presents a structural analyzing and manual calculations for a composite Parallel Beam with Steel class (S275) and Concrete class (C30/37) with a Decking (Ribdeck AL) a single unpropped support condition, 1mm gauge, 0.103 kN/m² Self weight, assumed slab depth 150mm from RLSD website with a concrete volume is 0.125 m^3/m^2 . The calculations includes bending design, shear stress, shear connection, deflection (Elastic), checking of non-composite state, bending design and shear stress of spine beam. Furthermore, the forces, shear and bending moment diagrams for rib beam are also presented (using QSE 7 Staad Pro). As per BS 5950-1 Advanced UK Beams. **Keywords:** Composite parallel beam, structural analysis, BS 5950-1 Advanced UK beams, QSE 7 Staad Pro.

1.INTRODUCTION

Figure 1: Top view of the analyzed parallel beam.

1.1 Material used

 $\begin{array}{ll} - \mbox{ Steel (S275)} & f_{yk} = f_{yd} = 275 \ \mbox{N/mm}^2 \\ - \mbox{ Concrete (C30/37)} & f_{ck} = 30 \ \mbox{N/mm}^2 \\ - \mbox{ Decking (Ribdeck AL)} & \mbox{ support condition: Single - unpropped} \\ & \mbox{ Gauge = 1.0 mm} \\ & \mbox{ Self weight = 0.103 kN/m}^2 \\ & \mbox{ Assumed slab depth 150mm from RLSD website the concrete volume is 0.125 m}^{3/m^2} \end{array}$

Quick Response Code	Journal homepage:	Copyright @ 2019: This is an open-access
	http://www.easpublisher.com/easjecs/	article distributed under the terms of the
별정말	Article History Received: 15.02.2019	Creative Commons Attribution license which permits unrestricted use, distribution, and
	Accepted: 25.02.2019 Published: 12.03.2019	commercial use (NonCommercial, or CC-BY-
		are credited.

Figure 2: Forces, shear and bending moment diagrams for rib beam (using QSE 7 Staad Pro).

2.2 Bending Design

 $\begin{array}{ll} - \underbrace{\mathbf{b}_{eff}}_{= 0.25 \times \mathrm{L}} \\ = 0.25 \times 8.1 \mathrm{~m} = 2.03 \mathrm{~m} \\ \mathrm{Assuming ~steel ~beam ~carries ~50\% ~so,} \\ - \operatorname{M}_{Ed} &= 80.5 \mathrm{~kNm} \end{array}$

(3)

- From BS 5950-1 (Advanced UK Beams),

use section 254 x 146 x 37
$$S_x = 483 \text{ cm}^3$$
, A = 47.2 cm²

$$- T_{d} = A \times f_{yd}$$
(5)
= (47.2 cm² × 10² × 275 N/mm²) / (10³)
= 1298 kN
$$- T_{d} = C_{d}$$
(6)
Thus,
$$- Z = (T_{d} \times \delta_{c}) / (0.85 \times \alpha_{c} \times f_{ck} \times b_{eff})$$
(7)
= [(1208 kN × 1.5) / (0.85 × 0.85 × 30 N/mm² × 2030mm) k × 10³

Figure 3: Section view of the beam.

OK

d	= 256	mm		
Thickn	ess = 150	<u>mm</u>		
Overall	depth $= 406$	mm		
$\frac{1}{2}$ Z	= 22 n	<u>1m</u>		
	= 384	mm		
$\underline{\mathbf{b}}_{\mathrm{eff}}$	<u>= 203</u>	<u>mm</u>		
X	= 181	mm		
- $M_{pl,Rd}$	$= T_d \times \text{lever arr}$	n		
	$= C_d \times x$		(8)	
	$= (1298 \text{ kN} \times 0)$.181 m)		
	= 235 kNm	> 161 kNm	OK	
- $\mathbf{M}_{\mathrm{pl,a,R}}$	$\mathbf{f}_{\mathrm{d}} = \mathbf{f}_{\mathrm{yd}} \times \mathbf{S}_{\mathrm{x}}$		(9)	
	$= (275 \text{ N/mm}^2)$	\times 483 cm ³) / 10 ³		
	= 132.8 kNm	> 80.5 kNm	OK	
2.3 Shear stress		2		
Section 254 x 14	A = 47 A = 47	7.2 cm^2	t = 6.3 mm	
		B = 146.4 mm	r = 7.6 mm	
		T = 10.9 mm		
- A _{shear}	$= A - 2 \times T \times ($	B-t-2r)	(10)	
	$=4720 \text{ mm}^2 - 2$	$2 \times 10.9 \text{ mm} \times (14)$	$6.4 \text{ mm} - 6.3 \text{ mm} - 2 \times 7.6$	i mm)
	$= 1997 \text{ mm}^2 = 2$	20 cm^2		
$-V_{pl,a,Rd} = A_{shear}$	$\times (f_{yd} / \sqrt{3})$	2	(11)	
	$= 20 \text{ cm}^2 \times (27.1)$	$.5 \text{ kN/cm}^2 / \sqrt{3}$		

= 317.5 kN > 79.34 kN

3.RESULTS

 $-N = F / F_{Stud}$

3.1 Shear connection

The below equations has been used and the lower value of them was considered for the number of shear connection.

1. P_{Rd} Steel = (0	$.8 \times f_u \times \pi \times d^2)/c$	$(4 \times \delta_{\rm v})$	(12)
2. P _{Rd} Concrete	$= [0.29 \times \alpha \times d^2 \times$	$\sqrt{(f_{ck} \times E_{cm})} / \delta_v$	(13)
Assumed $f_u = 45$ Stud diameter d	50 N/mm^2 $= 20 \text{ mm}$	$\alpha = 1$ f _{ck} = 30 N/mm ²	
$\delta_v = 1.25$	> 1	$E_{cm} = 33000 \text{ N/mm}^2$	
Assumed II _{SC} / u	. > 4		
- P _{Rd} Steel	= [$(0.8 \times f_u \times \pi)$ = $(0.8 \times 450 \text{ N/m})$ = 90.48 kN	$ \begin{array}{l} \times \ d^2) \ / \ (4 \times \delta_v) \] \ / \ 10^3 \\ mm^2 \times \pi \times 20^2) \ / \ (4 \times 1.25) \end{array} $	
- P _{Rd} Concrete	$= (0.29 \times \alpha \times d^2)$ $= [0.29]$ $= 73.7$	$ \begin{array}{l} \times \sqrt{f_{ck} \times E_{cm}} / \delta_v \\ 0 \times 1 \times 20^2 \times \sqrt{(30 \ N/mm^2 \times 3300 \ kN)} \end{array} $	00 N/mm ²)] / 1.25

Note: P_{Rd} Concrete 73.7 kN < P_{Rd} Steel 90.48 kN, therefore, choose P_{Rd} Steel since it is lower than Concrete.

where	$\mathbf{F} = \mathbf{M}_{\mathbf{X}} / \mathbf{la}$	(14)
	F = 120.5 kNm / 0.181 m = 665.7 kN	
and	$F_{Stud} = P_{Rd}$ Concrete = 73.7 kN	(15)
Thus,	$N = F / F_{Stud}$	
	$N = 665.7 \text{ kN} / 73.7 \text{ kN} = 9.03 \approx 10$	

Number of shear connectors over first/last 2.03m, N \approx 10 shear connectors over 2.03 m @ 200mm spacing \geq 5d

$$\begin{array}{ll} - N = F \,/\, F_{Stud} & \mbox{where} & F = (M_{Max} - M_X) \,/\, la & (16) \\ & F = (161 \,\, kNm - 120.5 \,\, kNm) \,/\, 0.181 \,\, m = 223.8 \,\, kN & \mbox{and} & F_{Stud} = P_{Rd} \,\, Concrete = 73.7 \,\, kN & \mbox{Thus}, & N = F \,/\, F_{Stud} & \mbox{N} = 223.8 \,\, kN \,/\, 73.7 \,\, kN = 3.04 \approx 4 & \end{tabular}$$

Number of shear connectors over middle 2.02m, N \approx 4 shear connectors over 2.02 m @ 510mm spacing \geq 5d

Figure 4: Distribution of shear connectors with dimensions through the beam.

3.2 Deflection (Elastic)

 $= (4.303 \text{ kN/m}^2 + 3.0 \text{ kN/m}^2) \times 1.9 \text{ m}$ - Loading on rib beam = 13.9 kN/m $= E_S / E_{cm}$ (17)- m = 205000 N/mm² / 33000 N/mm² = 6.21- Section 254 x 146 x 37 ~ Area of section = 47.2 cm^2 - Width $= b_{eff} \times E_{cm} / E_S$ (18) $= (2.03 \text{ m} \times 33000 \text{ N/mm}^2) / 205000 \text{ N/mm}^2$ = 0.327 m $-A_{\rm C}$ (19) $= b \times h$ $= 327 \text{ mm} \times 150 \text{ mm} = 49050 \text{ mm}^2$

Figure 5: Geometry of the beam section.

Table 1: Moment of Inertia of the analyzed parallel beam.				
Description	$A (mm^2)$	r (mm)	$Ar^{2} (mm^{4})$	Iyy (mm ⁴)
Concrete	49050	17.8	15021563	91968750
Beam	4720	185.2	161891469	55370000
Σ			176913032	147338750

\mathbf{T}	45
Thus, $\mathbf{I} = \sum \mathbf{A}\mathbf{r}^2 + \sum \mathbf{I}\mathbf{y}\mathbf{y}$ (2)	4)
$= 176913032 + 147338750 = 324251782 \text{ mm}^4$	
$-\delta_{\text{Max}} = L / 300 \tag{2}$	25)
= 8.1 m / 300 = 27 mm	
$s = 5wL^4 = 5 \times 19.59N / mm \times (8100mm)^4$	
$O = \frac{1}{384EI} = \frac{1}{384 \times 205000 N / mm^2 \times 324251782 mm^4}$	20)
-165 mm $\leq \text{span} / 300 = 27 \text{ mm}$ OK	

3.3 Checking of non-composite state

Loading:	
- Self weight	of concret

- Self weight of concrete	$24 \text{ kN/m}^3 \times 0.125 \text{ m}^3/\text{m}^2$	$= 3.000 \text{ kN/m}^2$
- Self weight of decking		$= 0.103 \text{ kN/m}^2$
Total Dead load		$= 3.103 \text{ kN/m}^2$

3.4 Spine beam

- p = $w \times 1/2$ = 19.59 kN/m × 8.1 m / 2 = 79.34 kN

The reaction R1, R2, R3 and R4 has been obtained from QSE 7 Staad Pro and the values were as follows:

R1 = 147.56 kNR2 = 209.47 kNR3 = 209.47 kNR4 = 147.56 kN

Figure 6: The below illustrates the forces, shear and bending moment diagrams for spine beam (using QSE 7 Staad Pro).

4.CONCLUSION

4.1 Bending design

Max $M_{Ed} = 95.4 \text{ kNm}$ - $S_x = M_{Ed} / f_{yd}$ = (95.4 kNm / 275 N/mm²) × 10³ = 347 cm³

- From BS 5950- 1 (Advance UK Beams), use section 305 x 102 x 33 $S_x = 481 \text{ cm}^3, \text{ A} = 41.8 \text{ cm}^2$ $- M_{pl,a,Rd} = f_{yd} \times S_x$ $= (275 \text{ N/mm}^2 \times 481 \text{ cm}^3) / 10^3$ = 132.3 kNm > 95.4 kNm

4.2 Shear Stress

- Section 305 x 102 x 28 $A = 41.8 \text{ cm}^2$ t = 6.6 mmB = 102.4 mm r = 7.6 mmT = 10.8 mm

- A_{shear} = A - 2 × T × (B - t - 2r) = 4180 mm² - 2 × 10.8 mm × (102.4 mm - 6.6 mm - 2 × 7.6 mm) = 2439 mm² = 24.4 cm²

REFERENCES

- RICHARD LEES STEEL DECKING LTD. (2010). Technical manual (TMI), Ashbourne, Derbyshire. Available Online [http://www.rlsd.com/pdf/RLSD_TM1.pdf] access date: 15th November 2010 at 17-35.
- The 'blue book'. (2010). to BS 5950 1. Available Online [http://csbluebook.steel-sci.org/support/entry.htm] access date: 18th November 2010 at 19:10.
- 3. SMITH, F. (2010). Innovative Structures Notes, Department of Civil Engineering, University of Dundee.

OK