

East African Scholars Journal of Engineering and Computer Sciences
Abbreviated Key Title: East African Scholars J Eng Comput Sci
ISSN: 2617-4480 (Print) & ISSN: 2663-0346 (Online)
Published By East African Scholars Publisher, Kenya

Volume-3 | Issue-3 | Mar-2020 | DOI: 10.36349/easjecs.2020.v03i03.05

*Corresponding Author: Nguyen Tien Duy 37

Review Article

Fat32 File System Organization and Storage Mechanism

Nguyen Tien Duy1
1Thai Nguyen University of Technology – Thai Nguyen University, Thai Nguyen, Vietnam

Article History

Received: 08.02.2020
Accepted: 18.03.2020

Published: 26.03.2020

Journal homepage:

https://www.easpublisher.com/easjecs

Quick Response Code

Abstract: Contents of the paper make mention of the physical and logical organization on

the hard disk with a FAT32 system. It includes information structures such as Master Boot

Record (MBR), Partition Table, DOS Boot Record (DBR), FAT, Root Directory, etc.

Meaning of important information fields and their parts in the file FAT system. Base on

that, they are used by operating system in the file (folder) management, such as create,

delete and update, etc. The article is presented with the purpose of conveying to the readers

the necessary information when working (building utility programs) for magnetic disks

formatted with the FAT file system.

Keywords: File Allocation Table, Master Boot Record, Partition Table, DOS Boot

Record.

Copyright @ 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted

use, distribution, and reproduction in any medium for non commercial use (NonCommercial, or CC-BY-NC) provided the original author and source

are credited.

INTRODUCTION
In recent times, the rapid development of hard

disk drive capacity and BIOS access services have

given system developers a new-look at the logical

organization of high-quality hard drives (Stallings, W.

2003; Shri Vishnu Engineering College; &

https://en.wikipedia.org). In particular, organizing the

file system in FAT32 format is a focus of those who

care about, who build utility programs for hard disk

such as checking the drive parameters, formatting,

defragment, deleted data recovery, etc. (Hordeski, M.

1995; & Andrew, S. T. 1996).

Figure 1. Roller bearing structure

The logical structure of the hard disk in FAT32 format

Master Boot Record (MBR)

The Master Boot Record is created when

creating the first partition on the hard disk, this is the

most important information area on the disk. It occupies

the entire hard disk's first sector, its physical address is

always: track (cylinder) 0, side (head) 0, and sector 1.

The Master Boot Record contains a partition

table and a small piece of code. On x86-based

Nguyen Tien Duy; East African Scholars J Eng Comput Sci; Vol-3, Iss- 3 (Mar, 2020): 37-43

© East African Scholars Publisher, Kenya 38

computers, this code identifies the partition as having

system properties. MBR finds the location of the boot

partition on the disk, loads the code in Boot Sector into

memory and transfers control to the code in this Boot

Sector (https://en.wikipedia.org/).

Hard drive partition

Information about the main and extended

partition is stored in the partition table. The table

consists of 4 entries, each of which is 16 bytes in size

and located in the MBR. This table has a different

structure depending on the operating system. Each entry

starts at the offset addresses in the sector as follows:

 Partition 1 0x01BE (446)

 Partition 2 0x01CE (462)

 Partition 3 0x01DE (478)

 Partition 4 0x01EE (494)

The last two bytes of the sector are the

operating system signature and are always 0x55AA.

The following table describes the content of an entry in

the partition table, the example values correspond to the

first partition.

Table 1. The content of the entry in the partition table

Byte

Offset

Field

Length

Sample

Value
Meaning

00 BYTE 0x80
Boot Indicator. Indicates whether the partition is the system partition. Legal

values are: 00 = Do not use for booting. 80 = System partition.

01 BYTE 0x01 Starting Head.

02 6 bits 0x01
Starting Sector. Only bits 0-5 are used. Bits 6-7 are the upper two bits for the

Starting Cylinder field.

03 10 bits 0x00
Starting Cylinder. This field contains the lower 8 bits of the cylinder value.

Starting cylinder is thus a 10-bit number, with a maximum value of 1023.

04 BYTE 0x06

System ID. This byte defines the volume type. In Windows NT, it also

indicates that a partition is part of a volume that requires the use of the

HKEY_LOCAL_MACHINE\SYSTEM\DISK Registry subkey.

05 BYTE 0x0F Ending Head.

06 6 bits 0x3F
Ending Sector. Only bits 0-5 are used. Bits 6-7 are the upper two bits for the

Ending Cylinder field.

07 10 bits 0x196
Ending Cylinder. This field contains the lower 8 bits of the cylinder value.

Ending cylinder is thus a 10-bit number, with a maximum value of 1023.

08 DWORD 3F 00 00 00 Relative Sector.

12 DWORD 51 42 06 00 Total Sectors.

Partition Table

Head, Sector, and Cylinder Fields starting and the

ending

On x86 computers, the Head, Cylinder, and

Sector information fields starting and ending on the

boot disk are critical to starting the computer. The part

of the program in MBR will use the information in this

field to find and load the Boot Sector of the

corresponding partition.

The Cylinder field ends in the 10-bit partition

table, the start and end number fields are 1 byte long,

the Sector field begins and ends 6 bits long.

Hard disk disks are usually low-level

formatted from the factory with a sector size of 512

bytes, the maximum disk space described in the

partition table can be calculated by the following

formula:

MaxCapacity = (sector size)*(sectors per

track)*(cylinders)*(heads)

Corresponding is 512 x 63 x 1024 x 256 =

8,455,716,864 bytes or 7.8 GB (8 GB)

Sectors and Number of Sectors fields

For a primary partition, the Relative Sectors field

represents the deviation from the first sector of the disk

to the first sector of the partition in sectors. The

Number of Sectors field represents the total number of

sectors of the partition. The description of these fields

in the extended partition.

Primary Partition, Extended Partition and Logical

Drives

Logical Drives and Extended Partitions

When there are more than 4 logical drives on a

physical hard disk, the first partition should be used as

the primary partition. The second partition can be

created as an extended partition and possibly the rest of

the disk.

In an extended partition, we can create several

logical drives. When we have an extended partition on a

hard drive, the entry for this partition in the partition

table (the end of the Master Boot Record) points to the

first sector of the partition. The first sector of each

logical drive in an extended partition also has a partition

table, occupying the last 64 bytes of that sector (and 2

bytes marking the sector end).

There are several types of entries in a partition

table:

http://www.ntfs.com/partition-table.htm#Boot Indicator Field#Boot Indicator Field
http://www.ntfs.com/partition-table-heads.htm
http://www.ntfs.com/partition-table-heads.htm
http://www.ntfs.com/partition-table-heads.htm
http://www.ntfs.com/partition-table.htm#sec1#sec1
http://www.ntfs.com/partition-table-heads.htm
http://www.ntfs.com/partition-table-heads.htm
http://www.ntfs.com/partition-table-heads.htm
http://www.ntfs.com/partition-table-heads.htm#sec3
http://www.ntfs.com/partition-table-heads.htm#sec3

Nguyen Tien Duy; East African Scholars J Eng Comput Sci; Vol-3, Iss- 3 (Mar, 2020): 37-43

© East African Scholars Publisher, Kenya 39

 The first entry for the current logical drive.

 The second entry contains information about the

next logical drive in the extended partition.

 Partition 3 and 4 are equal to 0.

This structure is repeated with any logical

drive. The last logical drive only lists partition entries.

Entries between 2-4 are equal to 0.

The partition table entry only contains

information about the first disk, the first cylinder, of

each logical drive in the extended partition. The entry

for the first partition in each partition table contains the

first address of the data area on that logical drive. And

the entry for the second partition is the address of the

sector that contains the partition table for the next

logical drive, etc.

What is FAT?

The FAT file system (File Allocation Table) is

a simple file system, originally built for small disks and

a simple directory structure. The FAT file system is

named after the organization. The file distribution table

is located at the beginning of the volume. For safety,

FAT is written in 2 identical copies, in case of failure of

one table, the other will be used. Each logical drive

formatted with the FAT file system will be allocated

memory units according to the cluster. The default

cluster size depends on disk space.

The figure below shows the logical structure of a volume according to the FAT file system.

Figure 2. Structure of a FAT volume

The table 2 lists a number of different FAT systems

Table 2. Some types of FAT

System

Bytes Per Cluster

Within File Allocation

Table

Cluster limit

FAT12 1.5 Fewer than 4087 clusters.

FAT16 2 Between 4087 and 65526 clusters, inclusive.

FAT32 4 Between 65526 and 268,435,456 clusters, inclusive.

FAT Partition Boot Sector

The Boot Sector contains information that the

file system uses to access the volume. On x86

computers, the MBR uses the Boot Sector on the system

partition to load the operating system kernel files. The

following table describes the information fields in the

Boot Sector with a FAT file system formatted Volume.

Table 3. Information fields in Boot Sector

Byte Offset (in hex) Field Length Sample Value Meaning

00 3 bytes EB 3C 90 Jump instruction

03 8 bytes MSDOS5.0 OEM Name in text

0B 25 bytes BIOS Parameter Block

24 26 bytes Extended BIOS Parameter Block

3E 448 bytes Bootstrap code

1FE 2 bytes 0x55AA End of sector marker

The Table 4 describes the fields in the BIOS parameter block and the expanded BIOS parameter block.

Table 4. BIOS Parameter Block and Extended BIOS Parameter Block Fields

Byte Offset Field Length Sample Value Meaning

0x0B WORD 0x0002
Bytes per Sector. The size of a hardware sector. For most disks

in use in the United States, the value of this field is 512.

0x0D BYTE 0x08

Sectors Per Cluster. The number of sectors in a cluster. The

default cluster size for a volume depends on the volume size

and the file system.

0x0E WORD 0x0100

Reserved Sectors. The number of sectors from the Partition

Boot Sector to the start of the first file allocation table,

including the Partition Boot Sector. The minimum value is 1. If

the value is greater than 1, it means that the bootstrap code is

Nguyen Tien Duy; East African Scholars J Eng Comput Sci; Vol-3, Iss- 3 (Mar, 2020): 37-43

© East African Scholars Publisher, Kenya 40

too long to fit completely in the Partition Boot Sector.

0x10 BYTE 0x02

Number of file allocation tables (FATs). The number of copies

of the file allocation table on the volume. Typically, the value

of this field is 2.

0x11 WORD 0x0002

Root Entries. The total number of file name entries that can be

stored in the root folder of the volume. One entry is always

used as a Volume Label. Files with long filenames use up

multiple entries per file. Therefore, the largest number of files

in the root folder is typically 511, but you will run out of entries

sooner if you use long filenames.

0x13 WORD 0x0000

Small Sectors. The number of sectors on the volume if the

number fits in 16 bits (65535). For volumes larger than 65536

sectors, this field has a value of 0 and the Large Sectors field is

used instead.

0x15 BYTE 0xF8
Media Type. Provides information about the media being used.

A value of 0xF8 indicates a hard disk.

0x16 WORD 0xC900

Sectors per file allocation table (FAT). Number of sectors

occupied by each of the file allocation tables on the volume. By

using this information, together with the Number of FATs and

Reserved Sectors, you can compute where the root folder

begins. By using the number of entries in the root folder, you

can also compute where the user data area of the volume

begins.

0x18 WORD 0x3F00
Sectors per Track. The apparent disk geometry in use when the

disk was low-level formatted.

0x1A WORD 0x1000
Number of Heads. The apparent disk geometry in use when the

disk was low-level formatted.

0x1C DWORD 3F 00 00 00
Hidden Sectors. Same as the Relative Sector field in the

Partition Table.

0x20 DWORD 51 42 06 00

Large Sectors. If the Small Sectors field is zero, this field

contains the total number of sectors in the volume. If Small

Sectors is nonzero, this field contains zero..

0x24 BYTE 0x80

Physical Disk Number. This is related to the BIOS physical

disk number. Floppy drives are numbered starting with 0x00

for the A disk. Physical hard disks are numbered starting with

0x80. The value is typically 0x80 for hard disks, regardless of

how many physical disk drives exist, because the value is only

relevant if the device is the startup disk.

0x25 BYTE 0x00 Current Head. Not used by the FAT file system.

0x26 BYTE 0x29
Signature. Must be either 0x28 or 0x29 in order to be

recognized by Windows NT.

0x27 4 bytes CE 13 46 30
Volume Serial Number. A unique number that is created when

you format the volume.

0x2B 11 bytes NO NAME

Volume Label. This field was used to store the volume label,

but the volume label is now stored as special file in the root

directory.

0x36
8

bytes
FAT16

System ID. Either FAT12 or

FAT16, depending on the

format of the disk.

File Allocation System

The file allocation table contains several types of

information about each cluster on the volume (see the

example below for FAT16).

 Do not use: 0x0000

 Bad cluster: 0xFFF7

 Final cluster of a file: 0xFFF8-0xFFFF

 The cluster is used (of a file) carries any value not

equal to the above values.

There is no organization for FAT directory

structure and files are given in the first place on the

volume. The starting cluster number is the address that

is the first cluster used for a file. Each cluster contains a

pointer to the next cluster in the file or the value

0xFFFF signals the end of the file.

Nguyen Tien Duy; East African Scholars J Eng Comput Sci; Vol-3, Iss- 3 (Mar, 2020): 37-43

© East African Scholars Publisher, Kenya 41

Example: A cluster chain of some files:

Figure 3. Cluster string of 3 files

As shown in Figure 3, we see there are 3 files.

File1.txt file occupies 3 consecutive clusters. The

second file: File2.txt is a file and it also takes up 3

clusters. File3.txt file has the smallest size, only

occupies 1 cluster. In each case, the directory structure

points to the first cluster of the file.

FAT Root Folder

The FAT root directory contains entries that

point to each file or directory on the drive. The only

difference between the root directory and the other

directories are that the root directory is located at a

fixed location on the disk and has a fixed size (512

entries for the hard drive, the number of entries on the

floppy disk depend on the size of the disk, with a 1.44

MB floppy disk, the number of root directory entries is

224).

FAT Folder Structure

A directory contains a set of entries, each 32

bytes long for each file or a sub-folder. Each entry will

contain the following information:

 Name (according to 8.3 standards).

 Attribute byte (each bit carries a piece of attribute

information, described later).

 Creation time (24 bits).

 Creation date (16 bits).

 Last access date (16 bits).

 Last modification time (16 bits).

 Last modified date (16 bits).

 The cluster number comes from the FAT table (16

bits).

 File size (32 bits).

The information in the root directory is used

for all operating systems that support FAT. Because all

entries in the root directory are equal in size, the

attribute byte of each entry will indicate the type of the

entry. There is a bit that indicates whether the entry is a

sub-directory or a file. Usually, only the operating

system controls the creation of these bits.

Each FAT file has 4 attribute bits, they can be

created/deleted by the user, which are the properties:

archive file, system file, hidden file, and read-only file.

Filenames on FAT Volumes

Since Windows NT 3.5, files created or

renamed on a FAT volume use attribute bits to support

long file names in a way that does not affect MS-DOS

and OS/2 access, etc. Although the user creates a file

with a long name, Windows creates a “short” file name

in accordance with 8.3 for the file. To extend this

common entry, Windows creates one or more entries

for the file, each containing 13 characters (which are

part of) for the Unicode long file name. Windows will

set the attributes of the extended entries as part of the

long file name. MS-DOS and OS/2 will ignore these

entries when accessing because as they are transparent,

they only use the information in the first entry

(containing the file name in accordance with 8.3).

Example of Folder Entries for the long filename

Figure 4 shows all 4 entries for Thequi ~ 1.fox

file, its corresponding long name is The quick

brown.fox. The characters in the long name are encoded

according to Unicode, so each character in the name

occupies 2 bytes in the entry. The attribute field for the

long name entry is 0x0F and the attribute field for the

short name entry is 0x20.

Nguyen Tien Duy; East African Scholars J Eng Comput Sci; Vol-3, Iss- 3 (Mar, 2020): 37-43

© East African Scholars Publisher, Kenya 42

Figure 4. Example of root entry for long file names

Manage files on the hard disk in FAT32 format

File System Specifications

FAT32 is an extension of the FAT file system,

it can work on drives over 2 GB. Drives in FAT32

format may have a cluster count of more than 65536,

which is much larger than those in FAT16. FAT32 has

expanded the management space a lot more than

FAT16. With FAT32, a file can be as large as 4GB-2

bytes. FAT32 consists of 4 bytes on an entry in the FAT

table, which stores information about the cluster. Of

which the highest 4 bits in 32 bits of an element in the

FAT32 table are unused and do not belong to the cluster

number.

BPB on FAT32

The BPB (BIOS Parameter Block) of FAT32-

formatted drives is an extension of BPB to FAT16 /

FAT12. It contains the same information as the standard

BPB, but it also includes a few extra fields to store

specific FAT32 information. Here are some important

and commonly used information fields.

Table 5. Fields of BDB

Member Name Description

A_BF_BPB_BytesPerSector The number of bytes per sector.

A_BF_BPB_SectorsPerCluster The number of sectors per cluster.

A_BF_BPB_ReservedSectors The number of reserved sectors, beginning with sector 0.

A_BF_BPB_NumberOfFATs The number of File Allocation Tables.

A_BF_BPB_RootEntries This member is ignored on FAT32 drives.

A_BF_BPB_TotalSectors The size of the partition, in sectors.

A_BF_BPB_MediaDescriptor The media descriptor. Values in this member are identical to standard

BPB.

A_BF_BPB_SectorsPerFAT The number of sectors per FAT.

Note: This member will always be zero in a FAT32 BPB. Use the values from A_BF_BPB_BigSectorsPerFat and

A_BF_BPB_BigSectorsPerFatHi for FAT32 media.

A_BF_BPB_SectorsPerTrack The number of sectors per track.

A_BF_BPB_Heads The number of read/write heads on the drive.

A_BF_BPB_HiddenSectors The number of hidden sectors on the drive.

A_BF_BPB_HiddenSectorsHigh The high word of the hidden sectors value.

A_BF_BPB_BigTotalSectors The total number of sectors on the FAT32 drive.

A_BF_BPB_BigTotalSectorsHigh The high word of the FAT32 total sectors value.

A_BF_BPB_BigSectorsPerFat The number of sectors per FAT on the FAT32 drive.

A_BF_BPB_BigSectorsPerFatHi The high word of the FAT32 sectors per FAT value.

A_BF_BPBExtFlags Flags describing the drive. Bit 8 of this value indicates whether or not

information written to the active FAT will be written to all copies of the

FAT. The low 4 bits of this value contain the 0-based FAT number of the

Active FAT, but are only meaningful if bit 8 is set. This member can

contain a combination of the following values.

Value Description

BGBPB_F_ActiveFATMsk (000Fh) Mask for low four bits.

Nguyen Tien Duy; East African Scholars J Eng Comput Sci; Vol-3, Iss- 3 (Mar, 2020): 37-43

© East African Scholars Publisher, Kenya 43

BGBPB_F_NoFATMirror (0080h) Mask indicating FAT mirroring state. If set, FAT mirroring is disabled. If

clear, FAT mirroring is enabled.

 Bits 4-6 and 8-15 are reserved.

A_BF_BPB_FS_Version The file system version number of the FAT32 drive. The high byte

represents the major version, and the low byte represents the minor

version.

A_BF_BPB_RootDirStrtClus The cluster number of the first cluster in the FAT32 drive's root directory.

A_BF_BPB_RootDirStrtClusHi The high word of the FAT32 starting cluster number.

A_BF_BPB_FSInfoSec The sector number of the file system information sector. The file system

info sector contains a BIGFATBOOTFSINFO structure. This member is

set to 0FFFFh if there is no FSINFO sector. Otherwise, this value must be

non-zero and less than the reserved sector count.

A_BF_BPB_BkUpBootSec The sector number of the backup boot sector. This member is set to

0FFFFh if there is no backup boot sector. Otherwise, this value must be

non-zero and less than the reserved sector count.

A_BF_BPB_Reserved Reserved member.

CONCLUSION
We can see that the complex management of

the FAT file system has brought about efficiency,

namely: saving device memory, high access speed, ...

However, the complexity of FAT's complexity is a

major hindrance to those who need to work deeply with

magnetic discs in this format.

Building efficient, concise, highly useful

utility programs for hard drives is one of the permanent

aims of system programmers, IT students or others

interested in this area. And there's no other way we

need to find out the nature of storing information on the

hard drive - the object we're studying.

For example, a common problem for computer

users is data loss (often due to a wrong deletion). When

users want to recover their important data in many

ways. If you understand the organization of the FAT

file system, you can build a utility program "recover

data" with a certain degree of efficiency. Thinking, it

would be very valuable to recover the deleted data even

though the probability of success is not absolute.

Acknowledgments
This research was funded by the science fund

of the Thai Nguyen University of Technology.

REFERENCE
1. “Design of the FAT file system”,

https://en.wikipedia.org/wiki/Design_of_the_FAT_

file_system

2. Ahson, S.I. (1984). “Microprocessor with

application in Process Control”, Tata Mc.Graw

Hill.

3. Andrew, S. T. (1996). Modern Operating Systems,

Prentice Hall,.

4. Groover, M. P. (2016) Automation, Production

System and Computer Integrated Manufacturing,

Prentice Hall.

5. Hordeski, M. (1995). Personal Computer

Interfaces, Mc. Graw Hill.

6. Olsson, G., & Piani, G. (1990). “Computer Systems

for Automation and Control”, Prentice Hall.

7. Shri Vishnu Engineering College for women::

Bhimavaram Department of Information

Technology, “Computer Organization and

Architecture lecture notes”.

8. Stallings, W. (2003). Computer Organization and

Architecture Designing for Performation; Prentice

Hall.

http://www.ntfs.com/fat-boot-modif.htm#structs_BIGFATBOOTFSINFO#structs_BIGFATBOOTFSINFO
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system

