EAS Journal of Dentistry and Oral Medicine

Abbreviated key title: EAS J Dent Oral Med ISSN: 2663-1849 (Print) & ISSN: 2663-7324 (Online) Published By East African Scholars Publisher, Kenya

Volume-1 | Issue-1 | Jan-Feb-2019 |

Original Research Article

Association of Maternal Periodontal Health with Pre-Term Low Birth Weight Babies: A Case-Control Study.

Singh M.¹, Mago HS.², Mallik MS.³, Singh MM.⁴, Kumar A.⁵ Singh P.⁶

- ¹Senior Lecturer, Department of Periodontology and Oral Implantology, Kothiwal Dental College & Research Centre, Moradabad, Uttar Pradesh, India.
- ²Post Graduate Trainee, Department of Periodontology and Oral Implantology, Hazaribag College of Dental Sciences and Hospital, Jharkhand, India.
- ³Senior Lecturer, Department of Periodontology And Oral Implantology Buddha Institute Of Dental Sciences And Hospital, Patna, Bihar, India.
- ⁴Post Graduate Trainee, Department of Pedodontics and Preventive Dentistry, Kothiwal Dental College & Research Centre, Moradabad, Uttar Pradesh India.
- ⁵M.D.(Pediatrics And Neonatology), Private Practice, Bihar. India.
- ⁶Student, Bachelor of Biotechnology (Hons.), Amity University, Noida-201301, Gautam Budh Nagar, Uttar Pradesh, India

*Corresponding Author Dr. Mamta Singh

Abstract: Background and Objective: Maternal oral health is an important concern for community health providers. The health issues like preterm labor, low birth weight, infant mortality rate etc. have a relevant impact on both the health care system and the individual families affected. Among the oral diseases, periodontal disease is suggested to be an important risk factor associated with preterm low birth weight babies (PTLBW). PTLBW babies are a major issue in public health as they are related to high rate of infant mortality and morbidity. The aim of the present study was to evaluate the association of maternal periodontal disease with preterm low-birth weight babies. Materials and Methods: 60 systemically healthy post-partum mothers between the age group of 18-35 years who reported to the Obstetrics and Gyaenocology Department of the general hospital of the institute were included in the study. Based on inclusion and exclusion criteria, they were categorized into PTLBW group as cases and full-term normal birth weight group (FTNBW) as controls. PTLBW cases (n = 30) defined as spontaneous delivery before/<37 completed weeks of gestation and infants weighing < 2499g. Controls (FTNBW) were normal births at or after 37 weeks of gestation and infants weighing ≥ 2500 g. Data on periodontal status, pregnancy outcome variables, and information on other factors that may influence adverse pregnancy outcomes were collected within 2 days of labor. Data were subjected to Student's t-test and Pearson's correlation coefficient statistical analysis. Results: The statistical results proved a positive correlation between gestational age, low birth weight and clinical parameters. There was a statistically significant difference with respect to the gestational period at the time of delivery and birth weight of the infants in experimental (PTLBW) group (<0.001) as compared to control (FTNBW) group was observed. Overall, there was statistically significant poor periodontal status in the (PTLBW) group compared to (FTNBW) group. Conclusion: A positive co-relation was observed between periodontitis, gestational age, low birth weight and a positive correlation was found with respect to PTLBW and periodontitis.

Keywords: Full term birth, low birth weight, periodontitis, preterm birth, risk factors.

INTRODUCTION

The mouth serves as a mirror to reflect the health of the entire body and nevertheless serves as a portal for disease to the rest of the body (McCann, A. L., & Bonci, L. 2001). Since the old wives' tale of "the loss of a tooth for every pregnancy", oral health during pregnancy has long been a focus of interest (Gaffield, M. L. *et al.*, 2001). It is well known that hormonal changes during pregnancy are associated with oral

mucosal changes most of which are reversible clinically (Levm, R.P. 1987; Ferguson, M. M. *et al.*, 1978). The reasons for these changes are not well established. However, they can complicate pregnancy (Silverstein, L. H. *et al.*, 1996). Of all the changes, the ones most well documented about is pregnancy gingivitis and pregnancy epulis (synonyms – pregnancy tumour, epulis gravidarum, pregnancy granuloma) (Annan, B. D. R. T., & Nuamah, K. 2005).

Quick Response Code

Journal homepage:

http://www.easpublisher.com/easjdom/

Article History

Received: 10.01.2019 Accepted: 15.02.2019 Published: 28.02.2019 Copyright © 2019 The Author(s): This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

DOI: 10.36349/easjdom.2019.v01i01.004

Periodontitis may be regarded as a continuous pathogenic and inflammatory challenge due to ulceration of sulcular and junctional epithelium as seen during periodontal pocket formation when an established gingivitis lesion progresses to advanced periodontitis. The continuous release of cytokines in inflamed periodontal tissues is responsible for the progression of gingivitis to periodontitis and advanced periodontal tissue destruction.

The inflammatory cytokines e.g. interleukins such as IL-lα, IL-1β, IL-6, and IL-8, are present in the diseased periodontal tissues, and their unopposed production seems to play an important role in chronic leukocyte recruitment and tissue destruction. Acute periodontal disease primarily involves a local innate immune response to the microflora of the oral biofilm. Gingival epithelial cells recognize bacterial cell components via toll-like receptors and respond by producing IL-1 and TNF-α. Bacteria and bacterial products also penetrate the underlying tissues (Annan, B. D. R. T., & Nuamah, K. 2005). There they interact with fibroblasts and dendritic cells. These cells also produce proinflammatory cytokines. immune signals are generated by alternative complement activation. These bacterial products and proinflammatory cytokines affect vascular endothelial cells as well. Endothelial cells express cellular adhesion molecules (ICAM and VCAM) that recruit circulating immune cells. Vascular permeability is also increased – allowing the influx of phagocyte cells and serum into the gingival tissue. Neutrophils and macrophages are attracted to the site of infection by chemotaxis following gradients of complement proteins, cytokines, and bacterial products. Activated macrophages produce IL-12 and interferon-gamma (IFN-γ) (Annan, B. D. R. T., & Nuamah, K. 2005).

Overall, these processes result in gingival inflammation, and are responsible for the clinical manifestations of gingivitis further leading to periodontitis. It is possible that monitoring cytokine production or its profile may allow us to diagnose an individual's periodontal disease status and/or susceptibility to the disease.

In the last decade, periodontal infections have been associated with different systemic diseases, e.g., preterm low birth weight (LBW) (Agueda, A. et al., 2008). One reasonable mechanism begins with deleterious effects of endotoxins released from Gramnegative bacteria especially the increased no. of Prevotella intermedia during pregnancy responsible for periodontal disease.

Pre-term (PT) birth is a major cause of infant mortality and morbidity that has considerable societal, medical, and economic repercussions. The rate of PT birth appears to be increasing worldwide and efforts to

prevent or reduce its prevalence have been largely unsuccessful. If periodontal disease is associated with higher risk of adverse pregnancy outcome in these specific populations, large multicenter randomized-controlled trials will be needed to determine if prevention or treatment of periodontal disease, perhaps combined with other interventions, has an effect on adverse pregnancy outcome in these women.

The aim of the study was:

- To assess maternal periodontal health among preterm low birth weight group PTLBW and full term normal birth (FTNBW) groups
- To correlate gestational age and low birth with periodontal clinical parameters.

MATERIALS AND METHOD

60 systemically healthy primiparous mothers between the age group of 18-35 years who reported to the Obstetrics and Gyaenocology Department of the general hospital of the institute were included in the study. All mothers were eligible for the study, except those with congenital heart disease requiring antibiotic cover for invasive procedures, who had a multiple delivery, whose infants were stillborn, or whose infants did not fit either the "case" or "control" definitions. Patients outside that age group or having any systemic diseases were excluded as they may influence PTLBW. Based on inclusion and exclusion criteria, they were categorized into PTLBW group as cases and full term normal weight birth weight group (FTNBW) as controls.

PTLBW cases (n = 30) defined as spontaneous delivery before/<37 completed weeks of gestation and infants weighing < 2500g. Controls (FTNBW) were normal births at or after 37 weeks of gestation and infants weighing \geq 2500 g. Data on periodontal status, pregnancy outcome variables, and information on other factors that may influence adverse pregnancy outcomes were collected within 2 days of labor. Data were subjected to Student's t-test and Pearson's correlation coefficient statistical analysis.

STATISTICAL ANALYSIS

A two-sample Student's t-test assuming equal variances using a pooled estimate of the variance was performed to test the hypothesis that the resulting mean parameters between the two study groups were equal. The Pearson's correlation coefficient was used to reveal correlation between the gestational age/period versus Clinical parameters. The statistical analysis was performed using a software program (SPSS Version 18, SPSS Inc., Chicago, IL, USA), statistical significance being defined at P < 0.05.

RESULTS

The present study population comprised of a total of 60 subjects between the ages of 18 and 35 years; divided into two groups, PTB and FTB groups, respectively. The mean age for PTB group was $23.6 \pm$

1.245 years was not statistically different from the FTB group at 24.3 \pm 1.924 years. However, statistically significant difference was observed with respect to the gestational period at the time of delivery, with mean values (35.8 \pm 0.375) weeks for PTB and (38.6 \pm 0.458) weeks for FTB with a P < 0.001. The mean birth weight of the infants was also low in the PTB group (2.426 \pm 0.372) kg compared to FTB group (3.240 \pm 0.265) kg which was statistically significant (P < 0.001)

Oral hygiene status was poorer in the PTB group when compared with full term group (FTB), which was statistically significant (P < 0.001). Other clinical parameters like bleeding on probing, pocket depth and CALs between the two study groups were also showed a statistically significant difference (P < 0.001). In general, periodontal status was less healthy in the PTB group compared to full term group (FTB) [TABLE 1].

Table 1 Comparison of different variables among the two study groups

Variables	PTLBW (n=30, W<2500g)	FTNBW (n=30, W>2500g)	(Mean ±SD)	P-value
OHI-S	4.234±0.525	1.438±0.654	2.085±0.378	P<0.001
SBI	3.678±0.730	1.345±0.234	1.056±0.122	P<0.001
CPI	3.467±0.463	1.854±0.262	2.071±0.144	P<0.001
PPD	6.012±0.648	2.845±0.123	2.035±0.481	P<0.001
CAL	4.670±0.568	1.642±0.546	2.795±.0345	P<0.001

OHI-S – Oral Hygiene status simplified, SBI – Sulcus Bleeding index, CPI- Community Periodontal index, PPD- Probing pocket depth, CAL- Clinical attachment level, SD- Standard deviation P<0.001-statistically highly significant

Table 2 Correlation between gestational period, low birth and clinical parameter

Group	Weight W(kg)	SBI	CPI	PPD	CAL
PTLBW	2.426 ± 0.372	0.482*	0.276	0.42	0.322*
FTNBW	3.240 ± 0.265	0.124	-0.129	-0.072	0.180

PTLBW preterm low birth weight group FTNBW full term normal birth weight group, SBI – Sulcus Bleeding index, CPI- Community Periodontal index, PPD- Probing pocket depth, CAL- Clinical attachment level, *-statistically significant

DISCUSSION

As the title of the present study brings our focus on whether the association between maternal periodontitis with PTLBW is a myth or reality, our findings strongly support that the two are connected. The findings however disagree with Davenport *et al.*, (2002) who reported no evidence for an association between PLBW and periodontal disease. Their results did not support a specific drive to improve periodontal health of pregnant women as a means of improving pregnancy outcomes.

In the present study, the mean age of mothers among PTLBW was 23.6 ± 1.245 years and 24.3 ± 1.924 years for those in the FTNBW group, which shows no statistically significant difference between the two groups.

When means of gestational period/weeks at the time of delivery between PTBLW (35.8 \pm 0.375) weeks and FTNBW groups (38.6 \pm 0.458) weeks were compared the results were found to be statistically significant (P < 0.001). Similarly, birth weight of the infants in the PTLBW group was low (2.426 \pm 0.372) kg when compared to FTNBW group (3.240 \pm 0.265) kg, which suggests that delivery outcomes have been influenced by gestational age. The present finding are in agreement with the findings of Love *et al.*, (1965).

The SBI (3.678 ± 0.730) , oral hygiene index-simplified (4.234 ± 0.525) , and CPI (3.678 ± 0.730) among PTLBW group showed statistically

significant(<0.001) difference as compared to FTNBW group. This agrees with Modarres *et al.*, (2007) indicating that the control group had a good periodontal condition than the case group. The increased circulating levels of progesterone in turn cause dilation of gingival capillaries, permeability, and gingival exudates that may explain the redness and increased bleeding tendency during pregnancy (Zadeh-Modarres, S. *et al.*, 2007).

In the present study, PTLBW group showed significant (P < 0.001) association between PPD (6.012±0.648) and low birth weight (2.426 ± 0.372) as compared to FTNBW group. This is in concurrence with studies conducted byAgueda $et\ al.$, (2008), Bassani, D. G. (2007).

In the present study, CALs were much higher in FTNBW group (1.642±0.546) as compared to PTB group (4.670±0.568). This indicated a greater loss of attachment in the PTLBW group, which was statistically significant. Jarjoura *et al.*, (2005). compared the periodontal status of 83 PB mothers and 120 controls and found that PTLBW was associated with attachment loss (Jarjoura, K. *et al.*, 2005)

The present study showed a positive correlation between gestational age and clinical parameters which were significant in the PTLBW group compared to FTNBW with respect to bleeding index and CALs which was also observed in similar study conducted by Lopez *et al.*, (2002).

CONCLUSION

A positive co-relation was observed between periodontitis, gestational age, low birth weight and a positive correlation was found with respect to PTLBW and periodontitis. It has been well documented that periodontal disease is a treatable and preventable condition. In the event of a positive association of periodontal infection with PLBW, this would have potential applications in preventive oral health programs as an integral component of prenatal care for pregnant mothers. Indeed, as healthcare professionals working as a team, an understanding of the role of periodontal and systemic relationship and its implications will further enhance the quality of medical and dental care being provided to our patients in the community.

REFRENCES

- 1. McCann, A. L., & Bonci, L. (2001). Maintaining women's oral health. *Dental clinics of North America*, 45(3), 571-601.
- 2. Gaffield, M. L., Gilbert, B. J. C., Malvitz, D.M., & Romaguera, R. (2001). Oral health during pregnancy: an analysis of information collected by the pregnancy risk assessment monitoring system. *The Journal of the American Dental Association*, 132(7), 1009-1016.
- 3. Levm, R.P. (1987). Pregnancy gingivitis. J Med State Dent Assoc, 30-27.
- 4. Ferguson, M. M., Hart, D. M., Lindsay, R., & Stephen, K. W. (1978). Progeston therapy for menstrually related aphthae. *International journal of oral surgery*, 7(5), 463-470.
- Silverstein, L. H., Burton, J. C., Garnick, J. J., & Singh, B. B. (1996). The late development of oral pyogenic granuloma as a complication of pregnancy: a case report. Compendium of continuing education in dentistry (Jamesburg, NJ: 1995), 17(2), 192-8.

- 6. Annan, B. D. R. T., & Nuamah, K. (2005). Oral pathologies seen in pregnant and non-pregnant women. *Ghana medical journal*, *39*(1), 24-27.
- 7. Agueda, A., Ramón, J. M., Manau, C., Guerrero, A., & Echeverría, J. J. (2008). Periodontal disease as a risk factor for adverse pregnancy outcomes: a prospective cohort study. *Journal of clinical periodontology*, 35(1), 16-22.
- 8. Davenport, E. S., Williams, C. E. C. S., Sterne, J. A. C., Murad, S., Sivapathasundram, V., & Curtis, M. A. (2002). Maternal periodontal disease and preterm low birthweight: case-control study. *Journal of dental research*, 81(5), 313-318.
- 9. Love, E. J., & Kinch, R. A. H. (1965). Factors influencing the birth weight in normal pregnancy. *American Journal of Obstetrics & Gynecology*, 91(3), 342-349.
- 10. Zadeh-Modarres, S., Amooian, B., Bayat-Movahed, S., & Mohamadi, M. (2007). Periodontal health in mothers of preterm and term infants. *Taiwanese Journal of obstetrics and Gynecology*, 46(2), 157-161.
- 11. Agueda, A., Ramón, J. M., Manau, C., Guerrero, A., & Echeverría, J. J. (2008). Periodontal disease as a risk factor for adverse pregnancy outcomes: a prospective cohort study. *Journal of clinical periodontology*, 35(1), 16-22.
- 12. Bassani, D. G., Olinto, M. T. A., & Kreiger, N. (2007). Periodontal disease and perinatal outcomes: a case-control study. *Journal of clinical periodontology*, *34*(1), 31-39.
- Jarjoura, K., Devine, P. C., Perez-Delboy, A., Herrera-Abreu, M., D'alton, M., & Papapanou, P. N. (2005). Markers of periodontal infection and preterm birth. *American journal of obstetrics and* gynecology, 192(2), 513-519.
- 14. López, N. J., Smith, P. C., & Gutierrez, J. (2002). Higher risk of preterm birth and low birth weight in women with periodontal disease. *Journal of dental research*, 81(1), 58-63.