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Abstract: In the real time, floods have been a major cause of loss of life and property. Methods of prediction and 

mitigation range from human observers to sophisticated surveys and statistical analysis of climatic data. This paper 

presents a flood forecasting model to predict flood in rivers based on Artificial Neural Network (ANN). The river system 

chosen for the research was the Big Thompson River, located in North-central Colorado, United States of America. The 

study show that the forecast results in term of prediction accuracy of greater than 96% in +/-100 cubic feet per minute 

range. The average error of the predictions was less than 16 cubic feet per minute. To further validate the model’s 

predictive capability, a multiple regression analysis was done on the same data. The Neural Network’s predictions 

exceeded those of the multiple regression analysis by significant margins in all measurement criteria. 
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1. INTRODUCTION 

Natural disasters such as flood and tropical 

cyclones are regarded to be caused by extreme weather 

conditions as well as changes in global and regional 

climate. United States of America and other countries 

are faced with environmental and ecological challenges 

particularly in view of the impact of climate change. 

These include the occurrence of natural disasters such 

as fire, floods, tropical storms, major accidents, 

drought, epidemic diseases and food shortage. What is 

needed in flood forecasting is a system that can be 

continuously updated without the costly and laborious 

resurveying that is the norm in floodplain delineation. 

In recent years, many published papers have shown the 

results of research on Neural Networks (NN) and their 

applications in solving problems of control, prediction, 

and classification in industry, environmental sciences, 

and meteorology (French, Krajewski, & Cuykendall, 

1992); (Boznar, M., & Mlakar, 1993); (Aussem, 

Murtagh, & M., 1995); (Blankert, 1994); (Ekert, 

Cattani, & Ambuhl, 1996). Schultz (1996) 

demonstrated and compared three models of rainfall-

runoff models using remote-sensing applications as 

input. The first model was a mathematical model which 

demonstrated the ability to reconstruct monthly river 

runoff volumes based on infrared data obtained by the 

Meteosat geostationary satellite. The second model 

computes flood hydrographs from a distributed system 

rainfall/runoff model. Lee and Singh (1999) presented a 

Tank Model using a Kalman Filter to model rainfall-

runoff in a river basin in Korea. Choy and Chan (2003) 

used an associative memory network with a radial basis 

functions based on the support vectors of the support 

vector machine to model river discharges and rainfall 

on the Fuji River. Another study by Neary, Habib, and 

Fleming (2004) used the Hydrologic Modeling System 

developed by the Hydrologic Engineering Center. The 

model, commonly referred to as HMS-HEC, is widely 

used for hydrologic modeling, forecasting, and water 

budget studies. This paper is an effort to demonstrate 

the potential use, by a layperson, of a commercially 

available NN to predict stream flow and probability of 

flooding in a specific area. In addition, a comparison 

was made between a NN model and a multiple-linear 

regression model. 
 

The rest of this paper is organized as follows. 

Section 2 introduces neural networks model. Section 3 

applies neural networks for predicting flood events in 

the Big Thompson River, located in North-central 

Colorado, United States of America and conclusions are 

presented in Section 4. 
 

2. NEURAL NETWORK MODEL 

Neural networks have been successfully 

applied to the forecasting of different applications as 
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credit ratings (Kumar & Bhattacharya, 2006), Dow 

Jones forecasting (Kanas, 2001), customer satisfaction 

analysis (Gronholdt & Martensen, 2005), stock ranking 

(Refenes, Azema-Barac & Zapranis, 1993), and tourism 

demand (Law, 2000; Palmer, Montaño & Sesé, 2006). 

The nonlinear structures of neural networks have been 

very useful in forecasting and they have been shown to 

discover nonlinear relationships among the observations 

(Donaldson & Kamstra, 1996; Indro, Jiang, Patuwo & 

Zhang, 1999).  

 

Advantages of using NNs include the following:    

 A priori knowledge of the underlying process is not 

required. 

 Existing complex relationships among the various 

aspects of the process under investigation need not 

be recognized. 

 Solution conditions, such as those required by 

standard optimization or statistical models, are not 

preset. 

 Constraints and a priori solution structures are 

neither assumed nor enforced (French et al., 1992). 

 

In this section, the topology of a neural 

network is specified by the number of layers, the 

number of units per layer and the weighted connections 

among all the units. These types of layers are the Input 

layer, the Hidden layer (of which there may be none too 

many), and the Output layer (Fu, 1994) as shown in 

Figure 1. In a feed-forward network, data flows as 

indicated by the arrows, from the Input to the Output 

layer.

 

 
Figure 1. A neural network structure [Fu, 1994] 

 

The Input layer receives input signals or data 

from the external world and a node in this layer is 

called an Input unit. These units represent and encode 

the data or signal pattern presented to the network for 

processing (Fu, 1994, Kumar et al., 2004).The layer 

following the Input layer is the Hidden layer, and the 

nodes in this layer are called Hidden units. The Hidden 

layer can consist of one or more layers of neurons with 

the succeeding layers receiving input from preceding 

layers in feed-forward architecture. The Output layer is 

the final layer of the network, and the nodes in this 

layer are called Output units. These units represent 

encoded concepts (or values) for the training 

application under consideration.. 

 

3. APPLY NEURAL NETWORK FOR 

FORCASTING FLOOD EVENTS 

In this study, the Ward Systems Neural Shell 

Predictor (http://www.wardsystems.com) is applied to 

model rainfall/snowmelt-runoff relationship using 

observed data from the Big Thompson watershed 

located in North-central Colorado 

(http://lwf.ncdc.noaa.gov/oa/ncdc.html). For this study 

of the Big Thompson Watershed, six climatic 

observation stations were used for the input variables. 

For the purposes of building a model to demonstrate the 

feasibility of using the commercially available NN, all 

six stations’ data were used for the independent 

variables. The following table outlines the steps taken 

in creating forecasting model which is shown in Table 

1.
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Table 1: Steps in the use of Neural Networks 

Step—problem input Activities Definitions and comments 

Organizing the Data 

Buffering the Data 

Problem Input. 

Cleansing the data 

Elimination of ‘No report’ days. 

 

Build the neural 

network 

Training  

-Select Strategy 

- Selecting training set 

- Selecting the run set 

Train the Network 

 

 Establish the nodes, paths and weights for nodes and paths. 

Use multiple runs to smooth the input error terms  and optimize the 

desired characteristic (Correlation or MSE,) 

Smoothing factors (weights) are the only adjustable variables in the 

Genetic model. 

Apply the neural 

network 

Activation  

Run the model using 

hold-out set of data 

 Back propagate to adjust the weights and eliminate smoothed inputs. 

Run another iteration 

using hold-out set 

 Testing the model. 

Post network and Problem output  

Problem Output File export, data 

examination, printouts. 

Organize and evaluate efficiency of the model 

 

3.1. Evaluation of Model Reliability 

Two indicators are used to show the 

performance of the forecasting model. The network 

performance statistic known as R-Squared, or the 

coefficient of multiple determination, is a statistical 

indicator usually applied to multiple regression 

analysis. It compares the accuracy of the model to the 

accuracy of a trivial benchmark model wherein the 

prediction is just the average of all of the example 

output values. 

 

 

 

 

 Experimental Results For The First Run 

The initial run of the data that did not include 

the previous day’s stream flow and the Lake Estes 

discharge. It resulted in promising but not particularly 

good results. The following charts demonstrate the 

initial runs. 
 

These charts depict the actual values versus the 

predicted cfm flow values using data from the five 

climatic gauging stations. The measuring stations are 

Drake and Loveland. As one can see, there is a definite 

correlation between the input data and the resulting 

values. However, the extreme values are very poorly 

predicted.
 

 
Figure 2. Drake, Initial Run Actual vs. Predicted Values 

 

 
Figure 3. Loveland, Initial run Actual vs. Predicted Values 
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The R-Squared results are depicted in the 

graph below. The R-Squared started at a value of 

approximately 0.24 and improved over the addition of 

80 hidden neurons to an approximate 36 value. While 

promising, the results were not good enough to use as a 

predictive program. 
 

 
Figure 4. Drake, Initial Run R-Squared 

 

 
Figure 5. Loveland, Initial Run R-Squared 

 

 Experimental results for the second run 

The second run was initiated by adding 

outflow data from the main power plant dam located at 

Lake Estes on the upper Big Thompson River. This is 

the controlling dam on the Big Thompson River, which 

is situated above the two measuring stations that this 

study uses for the model. All inputs are identical to the 

first run. 
 

 
Figure 6. Drake, Second Run, Actual verses Predicted 

 

The actual value verses predicted values for 

the Drake measuring station and the Loveland 

measuring station both show definite improvement over 

the previous run. This run, with the outflow from Lake 

Estes, still is rather poor on predicting the extreme 

values associated with flooding events and as such are 

not adequate. 
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Figure 7. Loveland, Second Run, Actual verses Predicted 

 

The R-Squared value for this run at the Drake 

measuring station started just above .4 and did not 

improve through the addition of 80 hidden neurons. The 

R-Squared values for the Loveland measuring station 

started just above 0.24 and improved over the addition 

of 80 neurons to a value of 0.4600. Both stations 

showed significant improvement for the R-Squared 

values over the values from the first run. 

 

  
Figure 8. Drake, Second Run, R-Squared 

 

 
Figure 9. Loveland, Second Run, R-Squared 

 

 Experimental results for the final run 

The final run was initiated after a major 

breakthrough occurred in this research, which was the 

finding and implementing a technique used by (Hsu et 

al., 1996). This technique demonstrated that results 

were significantly improved by adding the previous 

day’s stream-flow or stage-level input with the other 

data. The same inputs are used in this run of data as 

were used in the two previous models. The new input 

for this data run is the previous day’s flow at the Drake 

and Loveland measuring stations, respectfully. 

 

The Actual versus Predicted results for both 

the Drake and the Loveland measuring stations are 

greatly improved in this final model as demonstrated by 

the charts below and the following statistical analysis. 

One extreme event occurred during this time period that 

was well out of the range of data available and was not 

adequately predicted by this NN. It is well known that a 

NN cannot predict an event that it has never seen before 

in the training data. There was no repeat of the 

magnitude of this event during the time period under 

study. 
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Figure 10. Drake Final Model, Actual versus Predicted 

 

 
Figure 11. Loveland, Final Model, Actual versus Predicted 

 

R-Squared for this run improved greatly over 

the first two models for both measuring stations. The 

Drake measuring station results for R-Squared started at 

just under 0.90 and improved slightly over the addition 

of 80 hidden neurons to a value of 0.9091.The R-

Squared results for Loveland started at about .86 and 

improved over the run of data to a value of .9671.

 

 
Figure 12. Drake, Final Model, R-Squared. 

. 

 
Figure 13. Loveland, Final Model, R-Squared. 

 

The Average Error for the final model 

improved dramatically over the results of the first two 

models. Both the Drake measuring station and the 

Loveland measuring station showed very tight average 
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errors. The Average Error for the Drake Measuring 

station started the run at about 15.7 cubic feet per 

minute and decreased over the run to a final value of 

15.24 cubic feet per minute. 

 

 
Figure 14. Drake, Final Model, Average Error. 

 

 
Figure 15. Loveland, Final Model, Average Error 

 

The Average Error for the Loveland measuring 

station started the run at about 26 cubic feet per minute 

and decreased to a value of 11.56 Cubic feet per minute. 

 

3.2. Compared with Multi-linear Regression Model  

The following Multi linear regression models 

were created and provided by Dr. Kadar Mazouz of 

Florida Atlantic University (Mazouz, 2006). A stepwise 

multi-linear regression model was generated for both 

data sets, Drake (Appendix A) and Loveland (Appendix 

B). Being a multiphase process, it stopped after the 

seventh model. For the Drake measuring station, it gave 

an R-square of 0.849, which is less than the 0.9091 R-

square the NN Model generated for the Drake Data sets. 

 

For the Loveland, the stepwise Multi-linear 

regression model was generated in eight iterations. It 

ran R-square of 0.803, which is less than the 0.9671 R-

square generated for the Loveland data using NNs.

 

The Statistical Measures Of These Models Is Shown In Table 2 As Follows: 
 

Table 2: Statistical analysis of the Neural Network model and Multi – linear regression model 

Neural Network model 

 R-squared Av.Error corrilation MSE RMSE 

Drake 0.9091 15.24 0.9534 1993.011 44.64 

Loveland 0.9671 11.56 0.9834 1016.943 31.89 

Multi – linear regression model 

Drake R-squared Adj.R square Std.Error of the Estimate 

Loveland 0.849 0.848 28.1527 

 0.803 0.802 20.76851 
 

4. CONCLUSION 

In this paper, a daily rainfall-runoff model for 

two flow-measuring stations, Drake and Loveland, on 

the Big Thompson River in Colorado, was developed 

using a Ward System NN program called the Neural 

Shell Predictor. The study attempts to demonstrate the 

feasibility of using a commercially available NN to 

accurately predict day-to-day normal flows of a river 

and to predict extreme flow conditions commonly 

called flood events. In developing this model, the 

following topics were addressed: (a) the use of a 

commercially available NN in the development of the 

daily rainfall, snowmelt, temperature-runoff process; 

(b) the evaluation of the reliability of future predictions 
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for this NN program; and (c) the comparison of results 

of the  to a Linear Multiple Regression model 

developed by Dr. Mazouz. 

 

Although the network trained in this study can 

only be applied to the Big Thompson River, the 

guidelines in the selection of the data, training criteria, 

and the evaluation of the network reliability are based 

on statistical rules. Therefore, they are independent of 

the application. These guidelines can be used in any 

application of NNs to other rivers. 
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