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Abstract: Formerly we have described two types of universal propositional proof systems for   each variant of 

propositional many-valued logic. The first of introduced systems is  a Gentzen-like system, the second one is based on 

the generalization of  the notion of determinative disjunctive normal form, defined by first coauthor for two-valued logic. 

The last type proof systems are “weak” ones with a “simple strategist” of proof search and we have investigated the 

quantitative properties, related to  proof complexity characteristics in them. In particular, for some class of many-valued 

tautologies  simultaneously optimal bounds (asymptotically the same upper and lower bounds) for each of main proof 

complexity characteristics are obtained in the second-type systems, considered for some versions of many-valued logic. 

Now we investigate the relations between the main proof complexty measures in both universal systems and prove the 

symilar results in Gentzen-like system for the same and for other classes of many-valued tautologies as well. 

Keywords: many-valued propositional logic, Gentzen-like system, determinative conjunct, determinative disjunctive 

normal form, elimination rule, proof complexity. 

 

INTRODUCTION 

Many-valued logic (MVL), which was created and developed in 1920 first by Łukasiewicz (Lukasiewicz, J. 

1920), has in the mean time many interesting applications in such fields as Logic, Mathematics, Formal Verification, 

Artificial Intelligence, Operations Research, Computational Biology, Cryptography, Data Mining, Machine Learning, 

Hardware Design etc., therefore the investigations in area of MVL are very actual.  

 

Two types of universal propositional proof systems are described in (Chubaryan, A., & Khamisyan, A. 2018) 

such that propositional proof system for every version of MVL can be presented in both of described forms. The first of 

introduced systems is a Gentzen-like system, the second one is based on the generalization of  the notion of determinative 

disjunctive normal forms, defined in (Chubaryan, A. 2002) by first coauthor. The last type proof systems are “weak” 

ones with a “simple strategist” of proof search and we have investigated the quantitative properties, related to  proof 

complexity characteristics in them. In particular, for some class of many-valued tautologies  simultaneously optimal 

bounds (asymptotically the same upper and lower bounds for each proof complexity characteristics: length, size, space 

and width) are obtained in the second-type systems, considered for some versions of many-valued logic. In this paper we 

investigate the relations between the main proof complexty measures in both mentioned universal systems and prove the 

symilar results in Gentzen-like system for the same and for other classes of many-valued tautologies as well. 

 

This article consists from follow main sections: Introduction, Preliminaries, in which the main notions, materials 

and methods are given, Main Results, in which we describe the methods of transformation of proof, given in one of 

mentioned systems, into some proof in the other system and give the results of proofs complexity measures comparison 

in these systems. In the end of paper we give Conclusion. 
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2. Preliminaries.  

2.1Main notions of k-valued logic.  

Let Ek be the set {0,
1

k−1
, … ,

k−2

k−1
, 1}. We use the well-known notions of propositional formula, which defined as usual 

from propositional variables with values from Ek, (may be also propositional constants), parentheses (,), and logical 

connectives & , , ,¬, every of which can  be defined by different mode. Additionaly we use two modes of exponential 

function p𝛔� and introduce the additional notion of formula: for every formulas A and B  the expression  𝑨𝑩  (for both modes) 

is formula also. 

 

In the  considered logics either only 1 or every of values  
1

2
�≤

𝒊

𝐤−𝟏
≤ 1 can be fixed as 

 

2.2Designated values. 

Definitions of main logical functions are: 

𝒑 ∨ 𝒒 = 𝑚𝑎𝑥(𝑝, 𝑞)   (1) disjunction  or 𝒑 ∨ 𝒒 = ,(𝑘 − 1)(𝑝 + 𝑞)-(𝑚𝑜𝑑�𝑘)/(𝑘 − 1)  (2) disjunction,    

𝒑&𝑞 = 𝑚𝑖𝑛(𝑝, 𝑞)         (1) conjunction or         𝒑&𝑞 = max�(𝒑 + 𝑞 − 1, 0)          (2) conjunction. 

 

Sometimes  (1) conjunction is denoted by ˄.   

 

 For implication we have two following versions: 

𝒑 ⊃ 𝒒 = {
1,�������������������������𝑓𝑜𝑟��𝑝 ≤ 𝑞
1 − 𝑝 + 𝑞,����������𝑓𝑜𝑟��𝑝 > 𝑞

             (1)  Łukasiewicz’s implication or 

 p⊃ 𝒒 = {
1,��������𝑓𝑜𝑟����������𝑝 ≤ 𝑞
𝑞,�������𝑓𝑜𝑟����������𝑝 > 𝑞

                        (2) Gödel’s implication 

 

And for  negation two versions also: 

¬𝒑 = 1 − 𝑝                                                        (1)  Łukasiewicz’s negation    or 

¬𝒑 = ((𝑘 − 1)𝑝 + 1)(𝑚𝑜𝑑�𝑘)/(𝑘 − 1)            (2)  cyclically permuting negation. 

Sometimes we can use the notation �̅� instead of ¬𝒑. 
 

For propositional variable p and 𝛅�=
𝑖

k−1
(0≤i≤k-1) we define additionally “exponent” functions: 

p𝛅�              as (𝑝 ⊃ δ)&�(δ ⊃ 𝑝) with (1) implication            (1)  exponent, 

p𝛅�              as p with (k-1)(1–�δ )  (2) negations.                              (2)  exponent. 

Note, that both (1) exponent and (2) exponent are no new logical functions. 

 

      If we fix “1” (every of values  
1

2
�≤

𝑖

k−1
≤ 1) as designated value, so a formula φ with variables p1,p2,…pn is called 

1-k-tautology (≥1/2-k-tautology) if for every�𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑛) ∈ 𝐸𝑘
𝑛 assigning 𝛿j (1≤j≤n) to each pj gives the value 1 (or 

some value  
1

2
�≤

𝑖

k−1
≤ 1) of φ. 

Sometimes we call 1-k-tautology or ≥1/2-k-tautology simply k-tautology. 

 

Determinative Disjunctive Normal Form for MVL 

The notions of determinative conjunct and determinative disjunctive normal forms are introduced at first in 

(Chubaryan, A. 2002) and then are described in more detail in (Aleksanyan, S. R., & Chubaryan, A. A. 2009).  The notions of 

determinative conjunct and determinative disjunctive normal form are generalized for all variants of MVL in  (Chubaryan, A., 

& Khamisyan, A. 2018).  

 

For every propositional variable 𝑝 in k-valued logic 𝑝0, 𝑝
1

 −1⁄ ,…, 𝑝
 −2

 −1⁄ � and 𝑝1 in sense of both exponent modes 

are the literals. The conjunct K (term) can be represented simply as a set of literals (no conjunct contains a variable with 

different measures of exponents simultaneously), and DNF can be represented as a set of conjuncts. 

 

Replacement-rule  are each of the following trivial identities for a propositional formula  : 

for both conjunction and (1) disjunction 

 &0 = 0& = 0,   ���  0 = 0  =  ,     &1 = 1& =  ,       ∨ 1 = 1 ∨  = 1, 

for (2) disjunction     .  
𝑖

𝑘−1
/ = .

𝑖

𝑘−1
  / = ¬¬ … ¬⏞    

𝑖

 ����������(0 ≤ 𝑖 ≤ 𝑘 − 1), 

for (1) implication 

 ⊃ 0 =  ̅  with  (1) negation,     0 ⊃  = 1,      ⊃ 1 = 1,      1 ⊃  =  , 

for (2) implication  
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 ⊃ 1 = 1,   0 ⊃  = 1,   ⊃ 0 = 𝑠 ̅̅ ̅ , where 𝑠 ̅̅ ̅ �𝑖𝑠�0 for  ˃0 and 1 for  =0, 

for (1) negation   ¬(i/k-1)=1-i/k-1    (0≤i≤k-1),   ¬ = � , 

for (2) negation  ¬(i/k-1)=i+1/k-1  (0≤i≤k-2),      ¬𝟏 =  ,  ¬¬ … ¬⏞    
 

 = � . 

 

Application of a replacement-rule to some word consists in replacing of its subwords, having the form of the left-

hand side of one of the above identities, by the corresponding right-hand side. 

In (Chubaryan, A & Khamisyan, A. 2018) the following auxiliary relations for replacement are introduced as well: 

for both variants of conjunction       . &
𝑖

𝑘−1
/ = .

𝑖

𝑘−1
& / ≤

𝑖

𝑘−1
����(1 ≤ 𝑖 ≤ 𝑘 − 2), 

for (1) implication  . ⊃
𝑖

𝑘−1
/  

𝑖

𝑘−1
  and     .

𝑖

𝑘−1
⊃  /  

𝑘−(𝑖+1)

𝑘−1
��(1 ≤ 𝑖 ≤ 𝑘 − 2), 

for (2) implication . ⊃
𝑖

𝑘−1
/  

𝑖

𝑘−1
��(1 ≤ 𝑖 ≤ 𝑘 − 2), .

𝑖

𝑘−1
⊃  /   ��(1 ≤ 𝑖 ≤ 𝑘 − 1). 

Let   be a propositional formula of k-valued logic,  = *𝑝1, 𝑝2, … , 𝑝𝑛+ be the set of all variables of φ and��  =

{𝑝𝑖 , 𝑝𝑖 , … , 𝑝𝑖 }��(1 ≤ 𝑚 ≤ 𝑛) be some subset of  . 

 

Definition 2.2.1:  

Given  ̃ = ( 1,  2, … ,  𝑚) ∈ 𝐸 
𝑚 , the conjunct �  = *𝑝𝑖 

  , 𝑝𝑖 
  , … , 𝑝𝑖 

  +  is called  −
𝑖

𝑘−1
-determinative 

(0 ≤ 𝑖 ≤ 𝑘 − 1), if assigning�  �(1 ≤  ≤ 𝑚) to each�𝑝𝑖 
and successively using replacement-rules and, if it is necessary, the 

auxiliary relations for replacement also, we obtain the value  
𝑖

𝑘−1
 of  ��independently of the values of the remaining variables. 

Every  −
𝑖

𝑘−1
−determinative conjunct is called also  -determinative or determinative for  . 

 

Definition 2.2.2.  

A DNF  = * 1,  2, … ,   +  is called determinative DNF (DDNF) for   if  =   and if “1”  (every of values  
1

2
� ≤

𝑖

 −1
≤ 1 ) is (are) fixed as designated value, then every conjunct   𝑖(1� ≤ 𝑖� ≤  )  is 1-determinative (

𝑖

 −1
−

     m  a    �   m�     a   �      a  )  for  . 

 

Remark 2.2.  

As in (Chubaryan, A. 2002) it is also easily proved,  that  

 if for some k-tautology  , the minimal number of literals, containing in  -determinative conjunct, is 𝑚,then  -

determinative DNF has at least  𝑚conjuncts;  

 if for some k-tautology   there is such 𝑚�that every conjunct with 𝑚�literals is  -determinative, then there is  -

determinative DNF with no more than  𝑚conjuncts. 

 

2.3. Definitions of universal systems for MVL . 

      Here we give the definitions of two universal systems, which are described in (Chubaryan, A., & Khamisyan, A. 

2018).  

 

2.3.1. The universal elimination system UE for all versions of MVL. 

 The axioms of Elimination systems    aren’t fixed, but for every formula  − 𝒗  𝒖  �  each conjunct from some 

DDNF of   can be considered as an axiom. 

For k-valued logic the  inference rule is elimination rule ( -rule)  

 0 {𝑝0},��� 1 {𝑝
1

𝑘−1},���…�,��� 𝑘−2 {𝑝
𝑘−2
𝑘−1},��� 𝑘−1 *𝑝1+

 0 � 1 �…� � 𝑘−2 � 𝑘−1
’ 

where mutual supplementary literals (variables with corresponding (1) or (2) exponents) are eliminated. 

Following (Chubaryan, A., & Khamisyan, A. 2018), a finite sequence of conjuncts such that every conjunct in the 

sequence is one of the axioms of UE or is inferred from earlier conjuncts in the sequence by  -rule is called a proof in UE. A 

DNF  = * 1,  2, … ,   +  is k-tautological if by using  -rule can be proved the empty conjunct ( )  from the axioms 

* 1,  2, … ,   +. 
The completeness of these systems is obvious. 

 

2.3.2. Sequent type system US for all versions of MVL. 

Sequent system uses the denotation of sequent     where   (antecedent) and   (succedent) are finite (may be empty) 

sequences (or sets) of propositional formulas. 

For every literal   and for any set of literals    the axiom sxeme  of  propositional system US  is  ,    . 
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For every formula  �,  , for any sets of literals  ,  𝑖 �( = 0,… ,  − 1), each  1,  2,   from the set Ek and for  ∈ *&,∨
, ⊃+  the logical rules of US are: 

  
��     �   ���������     

��  ( � � )  ( , ,  ,  ))
���������   x 

     �   ��������     

���  (  )
    ( , ,  ,  )

)
  ����� ¬

��    

  ���(¬ ) ¬( , ) 

     a  �   m  a     
�  ,    ,���  , 

 
     ,���…�,���    , 

   
     ,���    ,    

   �   �…� �     �      
, 

Where many-valued functions��  ( ,  ,  1,  2),  exp( ,  ,  1,  2),  ¬( ,  ),�� must be defined individually for each 

version of MVL such, that 

1) formulas     ⊃ (   ⊃ ( �  � )𝜑 ( , ,  ,  )),    ⊃ (   ⊃ (  )𝜑   ( , ,  ,  ))  and    

             ⊃ (¬ )𝜑¬( , )  must be  k-tautology in this version, 

2) if for some  1,  2,    the value of  1   2 ( 1
  , ¬ )  is one of designed values in this version of MVL , then 

( 1   2)
𝜑 (  ,  ,  ,  ) =� 1   2 (( 1

  )𝜑   (  ,  ,  ,  ) =  1
  , (¬ )𝜑¬( , ) = ¬ ). 

       We use the well known notion of proof in sequent systems. We say that formula A is derived in US iff the sequent 

 𝑨 is deduced in US. 

Completeness of US is proved in (Chubaryan, A., & Khamisyan, A. 2018). 

 

2.4. Definitions of main proof complexity measures. 
Four main characteristics of the proof are considered in the theory of proof complexity. Following (Filmus, Y. et al., 

2012) we give the formal definitions of all proof complexity measures. 

 

If a proof in the system   is a sequence of lines, where each line is an axiom, or is derived from previous lines by 

one of a finite set of allowed inference rules, then a  -configuration is a set of such lines. A sequence of  -configurations 

*  ,  𝟏 , … ,  𝒓+is said to be  -derivation if    is empty set and for all 𝒕�(𝟏 ≤ 𝒕 ≤ 𝒓) the set  𝒕 is obtained from  𝒕−𝟏by one 

of the following derivation steps: 

Axiom Download:  𝒕 =  𝒕−𝟏  * 𝑨+, where   𝑨 is an axiom of  . 

Inference:  𝒕 =  𝒕−𝟏  * +, for some   inferred by one of the inference rules for  from a set of assumptions, 

belonging to  𝒕−𝟏. 

Erasure:  𝒕   𝒕−𝟏.  

A  -proof of a tautology   is a  -derivation *  ,  𝟏, … ,  𝒓+ such that  ̃ ∈  𝒓, where  ̃ is empty conjunct in UE 

and  is   in US. 

 

By | | we denote the size of a formula  , defined as the number of all logical signs entries. It is obvious that the full 

size of a formula, which is understood to be the number of all symbols, is bounded by some linear function in | |. 
 

The 𝒔𝒊𝒛 ( ) of a  -derivation is a sum of the sizes of all lines in a derivation, where lines that are derived multiple 

times are counted without repetitions. The 𝒔𝒕 𝒑𝒔(𝒕) of a  -derivation is the number of axioms downloads and inference steps 

in it. The 𝒔𝒑   (𝒔)of a  -derivation is the maximal space of a configuration in a derivation, where the space of a 

configuration is the total number of logical signs in a configuration, counted with repetitions. The 𝒘𝒊 𝒕 (𝒘)  of a  -

derivation is the size of the widest line in a derivation.  

 

Let   be a proof system and   be a tautology. As known the minimal possible value of 𝒕 −    𝒑  𝒙𝒊𝒕𝒚�( −

   𝒑  𝒙𝒊𝒕𝒚, 𝒔 −    𝒑  𝒙𝒊𝒕𝒚,𝒘 −    𝒑  𝒙𝒊𝒕𝒚) for all proofs of tautology   in  is denoted by 𝒕 
 (  

 , 𝒔 
 , 𝒘 

 ).  

Let Ф1 and Ф2 be two different proof systems. 

 

Definition 2.4.1.1.  

The system Ф1 p-simulates the system Ф2 if there exist the polynomial p() such, that for each formula    provable both 

in the systems Ф1 and Ф2, we have    �
 1 � ≤ ��𝑝(  

 2)�. 

 

Definition 2.4.1.2. 

The systems Ф1 and Ф2 are p-equivalent, if systems Ф1 and Ф2 p-l-simulate each other. 

 

3.Main Results. 

Here we give the algorithms of proofs  transformation from one system into other system and the results of proofs 

complexity measures comparison in these systems, which are obtained on the base of transformation algorithms. 
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US �UE Algorithm. 

Let A be some k-tautology and  1   1,  2   2, … ,  𝑡     be some US-proof of  A with minimal possible steps. 

Without violation of community we can change the order of proof sequents such that each use of “elimination rule” is after the 

all uses of     ,    x    and�� �  ¬  rules. Let  1   1,  2   2, … ,  𝑟    ,   +1    +1, … ,  𝑡     be such US-proof 

of  A, where only sequents   +1    +1, … ,  𝑡     are obtained by “elimination rule”. After them we choose from sequents  

 1   1,  2   2, … ,  𝑟     only such sequents, succedent of which is A. It is obvious, that the set of literals in antecedents 

of such sequents are A-determinative and now we fix them as axioms in UE. Then we must use the “elimination rule” of UE in 

the same order, as “elimination rules” of US. 

It is not difficult to see that 

𝒕𝑨
  ≤ 𝑡 − 𝑟 ≤ 𝒕𝑨

  , 

 𝑨
  ≤  𝑨

  ,   𝒔𝑨
  ≤ 𝒔𝑨

  ,���𝒘𝑨
  ≤ 𝒘𝑨

  . 
So, the system UE p-simulates the system US. 

 

UE  �US Algorithm. 

Let A be some k-tautology and  1,  2, … ,   ,   +1, … ,  𝑡 be some UE-proof of A with minimal possible steps, where 

the conjuncts  1,  2, … ,    are all axioms of this proof. As every conjunct  𝑖�( = 1, … ,  ) is A-determinative, then we can 

derive at first  all sequents  𝑖   ��( = 1, … ,  ), using the rule     ,    x    and�� �  ¬  step by steps to subformulas of 

A with some exponents (see generalization of Kalmar’s proof from [2]). Then we must use the “elimination rule” of US in the 

same order, as “elimination rules” of UE are used in the last part   +1, … ,  𝑡 of given UE-proof. 

It is not difficult to see that 

𝒕𝑨
  ≤  |𝑨| + 𝑡 −  ≤ 𝒕𝑨

  |𝑨|, 
 𝑨
  ≤ 𝒕𝑨

  |𝑨||𝑨| ≤  𝑨
  |𝑨||𝑨|, 

𝒔𝑨
  ≤ 𝒔𝑨

  |𝑨||𝑨|,    𝒘𝑨
  ≤ 𝒘𝑨

  |𝑨|. 
Note that there are  many sequences of k-tautologies An , sizes  of which can be very long, but  𝑡 −  𝑜𝑚𝑝  𝑥𝑖𝑡𝑖 𝑠 of 

their UE-proofs  are bounded by some constant, therefore the system US�does not p-simulate the system UE and the systems 

UE and US do not be p-equivalent , but nevertheless some classes of k-tautologies have the same proof complexities bounds in 

both systems. 

 

Bounds of proof complexity measures of some classes of k-tautologies  in some variants  of   �and US. 

In some papers in area of propositional proof complexity for 2-valued classical logic (Chubaryan A, 2002 &  

Aleksanyan, S. R et al,  2009)  the following tautologies (Topsy-Turvy Matrix) play key role 

    , = ⋁ ⋀ ⋁𝒑𝒊 
  

 

𝒊 𝟏

 

  𝟏( 𝟏,  ,…,  )∈  

(  𝟏, 𝟏 ≤  ≤   − 𝟏). 

For all fixed   𝟏 and   in above indicated intervals every formula of this kind expresses the following true 

statement: given a 0,1-matrix of order     we can “topsy-turvy” some strings (writing 0 instead of 1 and 1 instead of 0) so 

that each column will contain at least one 1.  

 

In  (Chubaryan, A, et al, 2016, 2017, 2018 & Tshitoyan, A., 2017) the notion “topsy-turvy” is generalized as follow: 

 

Definition 3.3. 

 Given  ̃ = ( 1,  2, … ,  𝑚) ∈ 𝐸𝑘
𝑚 and 𝛅 =

𝑖

 −1
 (0≤i≤k-1) we call 𝛅-(1)-topsy-turvy-result (𝛅-(2)-topsy-turvy-result) the cortege    

 δ̃,  which contains every    ( 1≤ j ≤ m) with (1) exponent  𝛅 for (1)  

 

negation   (with (2) exponent  𝛅 for (2) negation ) . 

On the base of this notion many k-tautologies were described and their proof complexities measures was investigated in 

UE systems for some variants of MVL in (Chubaryan, A., & Khamisyan, A. 2018; Chubaryan, A. A. et al., 2016; Tshitoyan, 

A. 2017). 

 

Main Theorem. 
1) In US systems for MVL with (1) conjunction, (1) or (2) disjunction, (1) implication, (1) negation ((1) conjunction, 

(1) disjunction, (2) implication, (2) negation) for 1-k-tautologies (k≥3)   
 
=     ,  for every   𝟏 and  = 𝐤, /𝐤-, where 

    , =  ⋀     
𝛔  

  𝟏
 
  𝟏(𝛔𝟏,𝛔 ,…,𝛔 )∈ 𝐤

  the following bounds are true 

 𝑜 𝑘 𝑜 𝑘(𝑡( 𝑛)) =  (𝑛);    𝑜 𝑘 𝑜 𝑘( ( 𝑛)) =  (𝑛); 

 𝑜 𝑘(𝑠( 𝑛)) =  (𝑛);              𝑜 𝑘( ( 𝑛)) =  (𝑛). 
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2) In US systems for MVL with (1) conjunction, (1) or (2) disjunction, (1) implication, (1) negation for ≥1/2-k-

tautologies (k≥3)   
 

=L    , , for every   𝟏 and a  � =   − 𝟏� where L    , =  ⋀     
𝛔  

  𝟏
 
  𝟏(𝛔𝟏,𝛔 ,…,𝛔 )∈  , 

where E={0,1} , the following bounds are true 

 𝑜 2 𝑜 𝑘(𝑡( 𝑛)) =  (𝑛);      𝑜 2 𝑜 𝑘( ( 𝑛)) =  (𝑛); 

 𝑜 2(𝑠( 𝑛)) =  (𝑛);               𝑜 2( ( 𝑛)) =  (𝑛). 
 

3) In US systems for MVL with (1) conjunction, (1) or (2) disjunction, (2) implication, (2) negation  for ≥1/2-k-

tautologies (k≥3)   
 

=G    , , for every   𝟏 and a  � =   − 𝟏� where G    , =  ⋀     
𝛔  

  𝟏
 
  𝟏(𝛔𝟏,𝛔 ,…,𝛔 )∈ 𝐤

  

the following bounds are true 

 𝑜 𝑘 𝑜 𝑘(𝑡( 𝑛)) =  (𝑛);       𝑜 𝑘 𝑜 𝑘( ( 𝑛)) =  (𝑛); 

 𝑜 𝑘(𝑠( 𝑛)) =  (𝑛);                𝑜 𝑘( ( 𝑛)) =  (𝑛). 
 

Proof of upper bounds is obtained from the same upper bounds, given in [6-9] for the systems UE,  from the bounds, 

following after UE  �US Algorithm  and from equation  𝑜 𝑘(| 𝑛|) =  (𝑛) as well. 

 Proof of lower bounds is obtained from the same lower bounds, given in (Chubaryan, A. A. et al., 2016; Tshitoyan, 

A. 2017) for the systems UE  and from the bounds, following after US  �UE Algorithm. 

 

CONCLUSION 

The analogous bounds of proof complexity measures can be obtained in US and UE type systems for all variants of MVL. The 

preference of such systems is the simple strategy of proof steps choice and the possibility of the automatic receipt of 

exponential lower bounds for tautologies with specific properties: minimal numbers of literals in determinative conjunct must 

be by order nearly equal to the size of formula. 
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