Structural Analysis for a Composite Parallel Beam Structures Using QSE 7 Staad Pro Software in Accordance to BS 5950-1 Advanced UK Beams
 Khalid Abdel Naser Abdel Rahim MSc, BEng (Hons)
 University of Coimbra, Portugal
 *Corresponding Author
 Khalid Abdel Naser Abdel Rahim

Abstract: This technical paper presents a structural analyzing and manual calculations for a composite Parallel Beam with Steel class (S275) and Concrete class (C30/37) with a Decking (Ribdeck AL) a single unpropped support condition, 1 mm gauge, $0.103 \mathrm{kN} / \mathrm{m}^{2}$ Self weight, assumed slab depth 150 mm from RLSD website with a concrete volume is 0.125 $\mathrm{m}^{3} / \mathrm{m}^{2}$. The calculations includes bending design, shear stress, shear connection, deflection (Elastic), checking of noncomposite state, bending design and shear stress of spine beam. Furthermore, the forces, shear and bending moment diagrams for rib beam are also presented (using QSE 7 Staad Pro). As per BS 5950-1 Advanced UK Beams. Keywords: Composite parallel beam, structural analysis, BS 5950-1 Advanced UK beams, QSE 7 Staad Pro.

1.INTRODUCTION

The dimensions of the parallel beam are $\mathrm{L} 1=5.1 \mathrm{~m}, \mathrm{~L} 2=8.1 \mathrm{~m}$

Figure 1: Top view of the analyzed parallel beam.

1.1 Material used

- Steel (S275)
- Concrete (C30/37)
$\mathrm{f}_{\mathrm{yk}}=\mathrm{f}_{\mathrm{yd}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
- Decking (Ribdeck AL) support condition: Single - unpropped

Gauge $=1.0 \mathrm{~mm}$
Self weight $=0.103 \mathrm{kN} / \mathrm{m}^{2}$
Assumed slab depth 150 mm from RLSD website the concrete volume is $0.125 \mathrm{~m}^{3} / \mathrm{m}^{2}$
\(\left.$$
\begin{array}{lll}\hline \text { Quick Response Code } & \begin{array}{l}\text { Journal homepage: } \\
\text { http://www.easpublisher.com/easjecs/ }\end{array} & \begin{array}{l}\text { Copyright © 2019 The Author(s): This is an open- } \\
\text { access article distributed under the terms of the } \\
\text { Creative Commons Attribution 4.0 International }\end{array}
$$

License (CC BY-NC 4.0) which permits unrestricted\end{array}\right]\)| use, distribution, and reproduction in any medium |
| :--- |
| for non-commercial use provided the original author |
| and source are credited. |

1.2 Loading

- Self weight of concrete $24 \mathrm{kN} / \mathrm{m}^{3} \times 0.125 \mathrm{~m}^{3} / \mathrm{m}^{2}=3.000 \mathrm{kN} / \mathrm{m}^{2}$	
	$=0.103 \mathrm{kN} / \mathrm{m}^{2}$
- Self weight of decking	$=1.200 \mathrm{kN} / \mathrm{m}^{2}$
- Dead load	$=4.303 \mathrm{kN} / \mathrm{m}^{2}$

Live Load $=3.000 \mathrm{kN} / \mathrm{m}^{2}$
Total Load $\quad\left(1.35 \times 4.303 \mathrm{kN} / \mathrm{m}^{2}\right)+\left(1.5 \times 3.000 \mathrm{kN} / \mathrm{m}^{2}\right)=10.31 \mathrm{kN} / \mathrm{m}^{2}$

2.METHODOLOGY

2.1 Rib beam

$$
\begin{align*}
& =10.31 \mathrm{kN} / \mathrm{m}^{2} \times 1.9 \mathrm{~m} \\
& =19.59 \mathrm{kN} / \mathrm{m} \\
\text { - Loading on rib beam } & \\
& \tag{1}\\
-\mathrm{M}_{\mathrm{Max}} & =79.34 \mathrm{kN} \\
& =\mathrm{w} \times 1^{2} / 8 \tag{2}\\
& =19.59 \times 8.1^{2} / 8 \\
& =161 \mathrm{kNm} \\
-\mathrm{M}_{\mathrm{X}} & \\
& =3 \times \mathrm{w} \times \mathrm{l}^{2} / 32 \\
& =3 \times 19.59 \mathrm{kN} / \mathrm{m} \times(8.1 \mathrm{~m})^{2} / 32 \\
& =120.5 \mathrm{kNm}
\end{align*}
$$

Figure 2: Forces, shear and bending moment diagrams for rib beam (using QSE 7 Staad Pro).

2.2 Bending Design

$$
\begin{align*}
-\mathrm{b}_{\text {eff }} & =0.25 \times \mathrm{L} \tag{3}\\
& =0.25 \times 8.1 \mathrm{~m}=2.03 \mathrm{~m}
\end{align*}
$$

Assuming steel beam carries 50% so,

$$
-\mathrm{M}_{\mathrm{Ed}} \quad=80.5 \mathrm{kNm}
$$

Note: we are using S275, therefore, the value of $f_{y d}$ will be $275 \mathrm{kN} / \mathrm{mm}^{2}$

$$
\begin{align*}
-\mathrm{S}_{\mathrm{x}} \quad & =\mathrm{M}_{\mathrm{Ed}} / \mathrm{f}_{\mathrm{yd}} \tag{4}\\
& =\left(80.5 \mathrm{kNm} \times 10^{6}\right) /\left(275 \mathrm{kN} / \mathrm{mm}^{2} \times 10^{3}\right)=293 \mathrm{~cm}^{3}
\end{align*}
$$

- From BS 5950-1 (Advanced UK Beams), use section $254 \times 146 \times 37$

$$
\mathrm{S}_{\mathrm{x}}=483 \mathrm{~cm}^{3}, \mathrm{~A}=47.2 \mathrm{~cm}^{2}
$$

$$
\begin{align*}
-\mathrm{T}_{\mathrm{d}} & =\mathrm{A} \times \mathrm{f}_{\mathrm{yd}} \tag{5}\\
& =\left(47.2 \mathrm{~cm}^{2} \times 10^{2} \times 275 \mathrm{~N} / \mathrm{mm}^{2}\right) /\left(10^{3}\right) \\
& =1298 \mathrm{kN} \\
-\mathrm{T}_{\mathrm{d}} & =\mathrm{C}_{\mathrm{d}} \\
& =0.85 \times \alpha_{\mathrm{c}} \times\left(\mathrm{f}_{\mathrm{ck}} / \delta_{\mathrm{c}}\right) \times \mathrm{b}_{\mathrm{eff}} \times \mathrm{z} \tag{6}\\
\text { Thus, } & \\
-\mathrm{Z} & =\left(\mathrm{T}_{\mathrm{d}} \times \delta_{\mathrm{c}}\right) /\left(0.85 \times \alpha_{\mathrm{c}} \times \mathrm{f}_{\mathrm{ck}} \times \mathrm{b}_{\text {eff }}\right) \tag{7}\\
& =\left[(1298 \mathrm{kN} \times 1.5) /\left(0.85 \times 0.85 \times 30 \mathrm{~N} / \mathrm{mm}^{2} \times 2030 \mathrm{~mm}\right)\right] \times 10^{3} \\
& =44 \mathrm{~mm}
\end{align*}
$$

Figure 3: Section view of the beam.

d	$=256 \mathrm{~mm}$
Thickness	$=150 \mathrm{~mm}$
Overall depth	$=406 \mathrm{~mm}$
$\underline{1 / 2} \mathrm{Z}$	$=22 \mathrm{~mm}$
	$=384 \mathrm{~mm}$
$\underline{b}_{\text {eff }}$	$=203 \mathrm{~mm}$
X	$=181 \mathrm{~mm}$

$-\mathrm{M}_{\mathrm{pl}, \mathrm{Rd}}=\mathrm{T}_{\mathrm{d}} \times$ lever arm

$$
\begin{equation*}
=C_{d} \times x \tag{8}
\end{equation*}
$$

$=(1298 \mathrm{kN} \times 0.181 \mathrm{~m})$
$=\mathbf{2 3 5} \mathbf{k N m} \quad>161 \mathbf{k N m}$
OK

$$
\begin{align*}
-\mathrm{M}_{\mathrm{pl}, \mathrm{a}, \mathrm{Rd}} & =\mathrm{f}_{\mathrm{yd}} \times \mathrm{S}_{\mathrm{x}} \tag{9}\\
& =\left(275 \mathrm{~N} / \mathrm{mm}^{2} \times 483 \mathrm{~cm}^{3}\right) / 10^{3} \\
& =\mathbf{1 3 2 . 8} \mathbf{~ k N m} \quad>\mathbf{8 0 . 5} \mathbf{~ k N m}
\end{align*}
$$

OK

2.3 Shear stress

$$
\begin{align*}
& \text { Section } 254 \times 146 \times 37 \quad A=47.2 \mathrm{~cm}^{2} \quad t=6.3 \mathrm{~mm} \\
& \mathrm{~B}=146.4 \mathrm{~mm} \quad \mathrm{r}=7.6 \mathrm{~mm} \\
& \mathrm{~T}=10.9 \mathrm{~mm} \\
& -\mathrm{A}_{\text {shear }} \quad=\mathrm{A}-2 \times \mathrm{T} \times(\mathrm{B}-\mathrm{t}-2 \mathrm{r}) \\
& =4720 \mathrm{~mm}^{2}-2 \times 10.9 \mathrm{~mm} \times(146.4 \mathrm{~mm}-6.3 \mathrm{~mm}-2 \times 7.6 \mathrm{~mm}) \\
& =1997 \mathrm{~mm}^{2}=20 \mathrm{~cm}^{2} \\
& -\mathrm{V}_{\text {pl,a,Rd }}=\mathrm{A}_{\text {shear }} \times\left(\mathrm{f}_{\mathrm{yd}} / \sqrt{3}\right) \tag{11}\\
& \begin{array}{ll}
=20 \mathrm{~cm}^{2} \times\left(27.5 \mathrm{kN} / \mathrm{cm}^{2} / \sqrt{ } 3\right) \\
=\mathbf{3 1 7 . 5} \mathbf{~ k N} \quad>79.34 \mathbf{~ k N}
\end{array} \\
& \text { OK }
\end{align*}
$$

3.RESULTS

3.1 Shear connection

The below equations has been used and the lower value of them was considered for the number of shear connection.

$$
\begin{align*}
& \text { 1. } \mathrm{P}_{\mathrm{Rd}} \text { Steel }=\left(0.8 \times \mathrm{f}_{\mathrm{u}} \times \pi \times \mathrm{d}^{2}\right) /\left(4 \times \delta_{\mathrm{v}}\right) \tag{12}\\
& \text { 2. } \mathrm{P}_{\mathrm{Rd}} \text { Concrete }=\left[0.29 \times \alpha \times \mathrm{d}^{2} \times \sqrt{ }\left(\mathrm{f}_{\mathrm{ck}} \times \mathrm{E}_{\mathrm{cm}}\right)\right] / \delta_{\mathrm{v}} \tag{13}
\end{align*}
$$

Assumed $\mathrm{f}_{\mathrm{u}}=450 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& \alpha=1 \\
& \mathrm{f}_{\mathrm{ck}}=30 \mathrm{~N} / \mathrm{mm}^{2} \\
& \quad \mathrm{E}_{\mathrm{cm}}=33000 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Stud diameter d=20 mm $\delta_{\mathrm{v}}=1.25$
Assumed $\mathrm{h}_{\mathrm{SC}} / \mathrm{d}>4$

$$
\begin{aligned}
-\mathrm{P}_{\mathrm{Rd}} \text { Steel } & =\left[\left(0.8 \times \mathrm{f}_{\mathrm{u}} \times \pi \times \mathrm{d}^{2}\right) /\left(4 \times \delta_{\mathrm{v}}\right)\right] / 10^{3} \\
& =\left(0.8 \times 450 \mathrm{~N} / \mathrm{mm}^{2} \times \pi \times 20^{2}\right) /(4 \times 1.25) \\
= & 90.48 \mathrm{kN} \\
& \\
- & \left(0.29 \times \alpha \times \mathrm{d}^{2} \times \sqrt{ } \mathrm{f}_{\mathrm{ck}} \times \mathrm{E}_{\mathrm{cm}}\right) / \delta_{\mathrm{v}} \\
& =\left[0.29 \times 1 \times 20^{2} \times \sqrt{ }\left(30 \mathrm{~N} / \mathrm{mm}^{2} \times 33000 \mathrm{~N} / \mathrm{mm}^{2}\right)\right] / 1.25 \\
& =73.7 \mathrm{kN}
\end{aligned}
$$

Note: P_{Rd} Concrete $73.7 \mathrm{kN}<\mathrm{P}_{\mathrm{Rd}}$ Steel 90.48 kN , therefore, choose P_{Rd} Steel since it is lower than Concrete.

$$
\begin{array}{lll}
-\mathrm{N}=\mathrm{F} / \mathrm{F}_{\text {Stud }} & \text { where } & \mathrm{F}=\mathrm{M}_{\mathrm{X}} / \mathrm{la} \\
& & \mathrm{~F}=120.5 \mathrm{kNm} / 0.181 \mathrm{~m}=665.7 \mathrm{kN} \\
& \text { and } & \mathrm{F}_{\text {Stud }}=\mathrm{P}_{\mathrm{Rd}} \text { Concrete }=73.7 \mathrm{kN} \\
& \text { Thus, } & \mathrm{N}=\mathrm{F} / \mathrm{F}_{\text {Sud }} \tag{15}\\
& \mathrm{N}=665.7 \mathrm{kN} / 73.7 \mathrm{kN}=9.03 \approx 10
\end{array}
$$

Number of shear connectors over first/last $2.03 \mathrm{~m}, \mathbf{N} \approx 10$ shear connectors over $2.03 \mathbf{m @ 2 0 0 m m}$ spacing $\geq \mathbf{5 d}$

$$
\begin{array}{lll}
-\mathrm{N}=\mathrm{F} / \mathrm{F}_{\text {Stud }} & \text { where } & \mathrm{F}=\left(\mathrm{M}_{\mathrm{Max}}-\mathrm{M}_{\mathrm{X}}\right) / \mathrm{la} \\
& & \mathrm{~F}=(161 \mathrm{kNm}-120.5 \mathrm{kNm}) / 0.181 \mathrm{~m}=223.8 \mathrm{kN} \tag{16}\\
& \text { and } & \mathrm{F}_{\text {Stud }}=\mathrm{P}_{\mathrm{Rd}} \text { Concrete }=73.7 \mathrm{kN} \\
& \text { Thus, } & \mathrm{N}=\mathrm{F} / \mathrm{F}_{\text {Sud }} \\
& \mathrm{N}=223.8 \mathrm{kN} / 73.7 \mathrm{kN}=3.04 \approx 4
\end{array}
$$

Number of shear connectors over middle $2.02 \mathrm{~m}, \mathrm{~N} \approx 4$ shear connectors over $2.02 \mathrm{~m} @ 510 \mathrm{~mm}$ spacing $\geq 5 d$

Figure 4: Distribution of shear connectors with dimensions through the beam.

$$
\begin{align*}
& \text { 3.2 Deflection (Elastic) } \\
& \text { - Loading on rib beam }=\left(4.303 \mathrm{kN} / \mathrm{m}^{2}+3.0 \mathrm{kN} / \mathrm{m}^{2}\right) \times 1.9 \mathrm{~m} \\
& =13.9 \mathrm{kN} / \mathrm{m} \\
& -\mathrm{m} \quad=\mathrm{E}_{\mathrm{S}} / \mathrm{E}_{\mathrm{cm}} \tag{17}\\
& =205000 \mathrm{~N} / \mathrm{mm}^{2} / 33000 \mathrm{~N} / \mathrm{mm}^{2}=6.21 \\
& \text { - Section } 254 \times 146 \times 37 \sim \text { Area of section }=47.2 \mathrm{~cm}^{2} \\
& \text { - Width }=b_{\text {eff }} \times \mathrm{E}_{\mathrm{cm}} / \mathrm{E}_{\mathrm{S}} \tag{18}\\
& =\left(2.03 \mathrm{~m} \times 33000 \mathrm{~N} / \mathrm{mm}^{2}\right) / 205000 \mathrm{~N} / \mathrm{mm}^{2} \\
& =0.327 \mathrm{~m} \\
& \text { - } \mathrm{A}_{\mathrm{C}} \quad=\mathrm{b} \times \mathrm{h} \tag{19}\\
& =327 \mathrm{~mm} \times 150 \mathrm{~mm}=49050 \mathrm{~mm}^{2}
\end{align*}
$$

$\begin{aligned}-\mathrm{L}_{\mathrm{a}} \quad & =0.5 \times \mathrm{h}_{\mathrm{C}}+\mathrm{H} \\ & =0.5 \times 150 \mathrm{~mm}+256 \mathrm{~mm}=331 \mathrm{~mm}\end{aligned}$
$\begin{aligned}-\mathrm{L}_{\mathrm{a}} \quad & =0.5 \times \mathrm{h}_{\mathrm{C}}+\mathrm{H} \\ & =0.5 \times 150 \mathrm{~mm}+256 \mathrm{~mm}=331 \mathrm{~mm}\end{aligned}$
$-\mathrm{M}_{\mathrm{C}}=\mathrm{A}_{\mathrm{C}} \times \mathrm{L}_{\mathrm{a}}$
$-\mathrm{M}_{\mathrm{C}}=\mathrm{A}_{\mathrm{C}} \times \mathrm{L}_{\mathrm{a}}$
$=49050 \mathrm{~mm}^{2} \times 331 \mathrm{~mm}=16235550 \mathrm{~mm}^{3}$
$=49050 \mathrm{~mm}^{2} \times 331 \mathrm{~mm}=16235550 \mathrm{~mm}^{3}$

- $\mathrm{A}_{\mathrm{S}}=4720 \mathrm{~mm}^{2}$
- $\mathrm{A}_{\mathrm{S}}=4720 \mathrm{~mm}^{2}$
$-\mathrm{L}_{\mathrm{a}} \quad=0.5 \times \mathrm{H}$
$-\mathrm{L}_{\mathrm{a}} \quad=0.5 \times \mathrm{H}$
$=0.5 \times 256 \mathrm{~mm}=128 \mathrm{~mm}$
$=0.5 \times 256 \mathrm{~mm}=128 \mathrm{~mm}$
$-\mathrm{M}_{\mathrm{S}} \quad=\mathrm{A}_{\mathrm{S}} \times \mathrm{l}_{\mathrm{a}}$
$-\mathrm{M}_{\mathrm{S}} \quad=\mathrm{A}_{\mathrm{S}} \times \mathrm{l}_{\mathrm{a}}$
$=4720 \mathrm{~mm}^{2} \times 128 \mathrm{~mm}=604160 \mathrm{~mm}^{3}$
$=4720 \mathrm{~mm}^{2} \times 128 \mathrm{~mm}=604160 \mathrm{~mm}^{3}$
- Neutral Axis $=\left(\mathrm{M}_{\mathrm{C}}+\mathrm{M}_{\mathrm{S}}\right) /\left(\mathrm{A}_{\mathrm{C}}+\mathrm{A}_{\mathrm{S}}\right)$
- Neutral Axis $=\left(\mathrm{M}_{\mathrm{C}}+\mathrm{M}_{\mathrm{S}}\right) /\left(\mathrm{A}_{\mathrm{C}}+\mathrm{A}_{\mathrm{S}}\right)$
$=\left(16235550 \mathrm{~mm}^{3}+604160 \mathrm{~mm}^{3}\right) /\left(49050 \mathrm{~mm}^{2}+4720 \mathrm{~mm}^{2}\right)$
$=\left(16235550 \mathrm{~mm}^{3}+604160 \mathrm{~mm}^{3}\right) /\left(49050 \mathrm{~mm}^{2}+4720 \mathrm{~mm}^{2}\right)$
$=313.2 \mathrm{~mm}$
$=313.2 \mathrm{~mm}$

Figure 5: Geometry of the beam section.
Table 1: Moment of Inertia of the analyzed parallel beam.

Description	$\mathbf{A}\left(\mathbf{m m}^{\mathbf{2}}\right)$	$\mathbf{r}(\mathbf{m m})$	$\mathbf{A r}^{\mathbf{2}}\left(\mathbf{m m}^{\mathbf{4}}\right)$	$\mathbf{I y y}\left(\mathbf{m m}^{\mathbf{4}}\right)$
Concrete	49050	17.8	15021563	91968750
Beam	4720	185.2	161891469	55370000
\sum			176913032	147338750

The inertia of the section is the sum of Ar^{2} and Iyy.
Thus, $\quad \mathbf{I}=\sum \mathbf{A r}^{2}+\sum \mathbf{I y y}$

$$
\begin{equation*}
=176913032+147338750=324251782 \mathrm{~mm}^{4} \tag{25}
\end{equation*}
$$

$-\delta_{\mathrm{Max}}=\mathrm{L} / 300$ $=8.1 \mathrm{~m} / 300=27 \mathrm{~mm}$

$$
\begin{equation*}
\delta=\frac{5 w L^{4}}{384 E I}=\frac{5 \times 19.59 \mathrm{~N} / \mathrm{mm} \times(8100 \mathrm{~mm})^{4}}{384 \times 205000 \mathrm{~N} / \mathrm{mm}^{2} \times 324251782 \mathrm{~mm}^{4}} \tag{26}
\end{equation*}
$$

$$
=16.5 \mathrm{~mm} \quad \leq \text { span } / 300=27 \mathrm{~mm}
$$

3.3 Checking of non-composite state

Loading:

- Self weight of concrete $24 \mathrm{kN} / \mathrm{m}^{3} \times 0.125 \mathrm{~m}^{3} / \mathrm{m}^{2}=3.000 \mathrm{kN} / \mathrm{m}^{2}$

- Self weight of decking	$=0.103 \mathrm{kN} / \mathrm{m}^{2}$
Total Dead load	$=3.103 \mathrm{kN} / \mathrm{m}^{2}$

Live Load $\quad=1.500 \mathrm{kN} / \mathrm{m}^{2}$
Total Load $\quad\left(1.35 \times 3.103 \mathrm{kN} / \mathrm{m}^{2}\right)+\left(1.5 \times 1.500 \mathrm{kN} / \mathrm{m}^{2}\right)=6.439 \mathrm{kN} / \mathrm{m}^{2}$
$\begin{aligned} & \text { - Loading on rib beam }=6.439 \mathrm{kN} / \mathrm{m}^{2} \times 2.03 \mathrm{~m}=13.07 \mathrm{kN} / \mathrm{m} \\ &-\mathrm{M}_{\mathrm{Ed}}=13.07 \mathrm{kN} / \mathrm{m} \times(8.1 \mathrm{~m})^{2} / 8 \\ &=107.20 \mathrm{kNm} \\ &-\mathrm{M}_{\mathrm{el}, \mathrm{l}, \mathrm{Rd}}=\mathrm{f}_{\mathrm{yd}} \times \mathrm{S}_{\mathrm{X}} \\ &=\left(275 \mathrm{~N} / \mathrm{mm}^{2} \times 433 \mathrm{~cm}^{3}\right) / 10^{3} \\ &=\mathbf{1 1 9 . 0 8} \mathbf{~ k N m} \quad>107.20 \mathbf{k N m} \quad \text { OK }\end{aligned}$

3.4 Spine beam

$$
\begin{aligned}
-\mathrm{p} & =\mathrm{w} \times 1 / 2 \\
& =19.59 \mathrm{kN} / \mathrm{m} \times 8.1 \mathrm{~m} / 2=79.34 \mathrm{kN}
\end{aligned}
$$

The reaction R1, R2, R3 and R4 has been obtained from QSE 7 Staad Pro and the values were as follows:
$\mathrm{R} 1=147.56 \mathrm{kN}$
$\mathrm{R} 2=209.47 \mathrm{kN}$
$\mathrm{R} 3=209.47 \mathrm{kN}$
$\mathrm{R} 4=147.56 \mathrm{kN}$

Figure 6: The below illustrates the forces, shear and bending moment diagrams for spine beam (using QSE 7 Staad Pro).

4.CONCLUSION

4.1 Bending design

$$
\begin{array}{rl}
\operatorname{Max} \mathrm{M}_{\mathrm{Ed}}=95.4 & \mathrm{kNm} \\
-\mathrm{S}_{\mathrm{x}} & =\mathrm{M}_{\mathrm{Ed}} / \mathrm{f}_{\mathrm{yd}} \\
& =\left(95.4 \mathrm{kNm} / 275 \mathrm{~N} / \mathrm{mm}^{2}\right) \times 10^{3}=347 \mathrm{~cm}^{3}
\end{array}
$$

- From BS 5950-1 (Advance UK Beams), use section $305 \times 102 \times 33$

$$
\mathrm{S}_{\mathrm{x}}=481 \mathrm{~cm}^{3}, \mathrm{~A}=41.8 \mathrm{~cm}^{2}
$$

$$
-\mathrm{M}_{\mathrm{pl}, \mathrm{a}, \mathrm{Rd}}=\mathrm{f}_{\mathrm{yd}} \times \mathrm{S}_{\mathrm{x}}
$$

$$
=\left(275 \mathrm{~N} / \mathrm{mm}^{2} \times 481 \mathrm{~cm}^{3}\right) / 10^{3}
$$

$$
=132.3 \mathrm{kNm} \quad>95.4 \mathrm{kNm}
$$

OK

4.2 Shear Stress

$$
\begin{array}{rrr}
\text { - Section } 305 \times 102 \times 28 & \mathrm{~A}=41.8 \mathrm{~cm}^{2} & \mathrm{t}=6.6 \mathrm{~mm} \\
\mathrm{~B}=102.4 \mathrm{~mm} & \mathrm{r}=7.6 \mathrm{~mm} \\
\mathrm{~T}=10.8 \mathrm{~mm} &
\end{array}
$$

$$
\begin{aligned}
-\mathrm{A}_{\text {shear }} \quad & =\mathrm{A}-2 \times \mathrm{T} \times(\mathrm{B}-\mathrm{t}-2 \mathrm{r}) \\
& =4180 \mathrm{~mm}^{2}-2 \times 10.8 \mathrm{~mm} \times(102.4 \mathrm{~mm}-6.6 \mathrm{~mm}-2 \times 7.6 \mathrm{~mm}) \\
& =2439 \mathrm{~mm}^{2}=24.4 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
-\mathrm{V}_{\mathrm{pl}, \mathrm{a}, \mathrm{Rd}}=\mathrm{A}_{\text {shear }} & \times\left(\mathrm{f}_{\mathrm{yd}} / \sqrt{ } 3\right) \\
& =24.4 \mathrm{~cm}^{2} \times\left(27.5 \mathrm{kN} / \mathrm{cm}^{2} / \sqrt{ } 3\right) \\
& =\mathbf{3 8 7 . 4} \mathbf{~ k N}
\end{aligned}
$$

REFERENCES

1. RICHARD LEES STEEL DECKING LTD. (2010). Technical manual (TMI),Ashbourne, Derbyshire. Available Online [http://www.rlsd.com/pdf/RLSD_TM1.pdf] access date: $15^{\text {th }}$ November 2010 at 17-35.
2. The 'blue book'. (2010). to BS 5950 - 1. Available Online [http://csbluebook.steel-sci.org/support/entry.htm] access date: $18^{\text {th }}$ November 2010 at 19:10.
3. SMITH, F. (2010). Innovative Structures Notes, Department of Civil Engineering, University of Dundee.
