

East African Scholars Journal of Engineering and Computer Sciences
Abbreviated Key Title: East African Scholars J Eng Comput Sci
ISSN: 2617-4480 (Print) & ISSN: 2663-0346 (Online)
Published By East African Scholars Publisher, Kenya

Volume-3 | Issue-10 | Dec-2020 | DOI: 10.36349/easjecs.2020.v03i10.004

*Corresponding Author: Dr. Manjeet Singh 226

Review Article

Influence of Anti-Patterns Detection Techniques on Software Maintenance

Dr. Manjeet Singh
1*

, Er. Abhinash Singla
1
, Er. Amreen Kaur

1
, Er. Beant Kaur

1

1Assistant Professors, Department of CSE, BGIET Sangrur, Punjab, India

Article History

Received: 21.11.2020

Accepted: 25.12.2020
Published: 30.12.2020

Journal homepage:

https://www.easpublisher.com

Quick Response Code

Abstract: Anti-patters are the defects which affect the system quality negatively.

An indication of the existence of anti- patterns, in the software is known as ―Code

Smell‖ which leads to the refactoring of system. Thus the maintenance becomes

difficult to manage. More the number of smells more refactoring is needed.

Different approaches have been identified for the detection of anti-patterns in the

system. The paper aimed at investigating the impact of anti-patterns on classes and

what are the certain kinds of anti-patterns that have a higher impact than others

finally the results have been concluded for the future studies in open source

systems. The paper is divided in to four sections in which the introduction is

followed by the types of anti-patterns. Furthermore the related work has been

examined carefully with a brief conclusion. Thus the paper reveals different

approaches for the identification code smells in the software system. Hence the

detection of smells will be helpful in providing more reliability during testing and

maintenance phases by predicting anti-patterns and faults before the delivery of the

product. Moreover the identification of anti-patterns will be of usage to the

community of software engineers and managers for improving the software

development maintenance activities.

Keywords: Anti-patterns, Code Smells, Refactoring and Maintenance.
Copyright © 2021 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

1. INTRODUCTION
Software systems require continuous

maintenance and intelligent development for achieving

good quality. Quality can be improved by various

quality assurance activities like formal technical

reviews, testing and enforcement of standards. Every

time when new software is to be developed; already

present capital (source code documents, design

templates) is used in the development process. But in

most of the cases the reusability of software

components degrades the performance and quality of

the software. Some common examples of software

reusability are: Software Libraries, Design Patterns,

Frameworks, Systematic Software Reuse. In software

designing when a problem is occurring time and again

than a typical solution is needed and a way is provided

by the software developers by introducing the term –

Design Patterns. But in majority of cases the design

patterns start performing like ―ANTI-PATTERNS‖.

Such design defects are called Code Smells or Anti-

Patterns. In case code smells are present maintenance

becomes the need of the system. The code smell is

referred as an indication of the presence of anti-patterns

in the system. More the number of smells more

maintenance is needed. Anti-Patterns are defined as a

classical style which provide a solution of the trouble

which could generates negative results. Hence, anti-

patterns are treated to be the negative solutions that

yield more problems than they locate. Therefore the

system starts demanding Refactoring [6].

The purpose of the paper is to disclose the

commonly occurring anti-patterns in system which is

generally specified in [5] and [6]. The work done will

be helpful to the community of software engineers and

managers for improving the software development

maintenance activities.

2. ANTI-PATTERNS IN SOFTWARE SYSTEM
The software quality is characterized by good

design. The design crumbles with the passage of time as

changes are made in the structure due to changing user

requirements. The defects of the software disclose

themselves in the form of ―Anti-patterns‖ or ―Code

Smells‖ [6]. There is a very fine line between the anti-

pattern and code smell. Anti-patterns are considered to

be a bad programming practice but not an error. Due to

lack of experience and relevant knowledge of the

software developers anti-patterns are introduced to the

literature, for solving a specific problem. Code Smell is

a manifestation that indicates the problem of software

system [5]. It is an implication that admits anti-patterns.

Manjeet Singh et al; East African Scholars J Eng Comput Sci; Vol-3, Iss-10 (Dec, 2020): 226-232

© East African Scholars Publisher, Kenya 227

However code smells are technically not wrong but they

indicate delicacy in design. It may lead to the failure of

system and risk of bugs in future. Hence system

demands ―Refactoring‖– changing the existing

software code without affecting the external behavior.

Nearly 20 code smells are specified in [6] which are

embodied in the source code where refactoring of code

is needed. The following types of anti-patterns/code

smells are suggested by the following author.

Table 1: Types of Anti-Patterns

Author Name Anti-pattern/Code Smells

M. Fowler [6] Lazy Class, Large Class, Long

Method, Long Parameter List, Message Chain, Duplicate Code,

Divergent Change , Shot Gun Surgery, Feature Envy, Data Clumps, Primitive

Obsession, Switch Statements,

Parallel Inheritance Hierarchies,

Middle Man, Speculative Generality, Inappropriate Intimacy, Temporary Field

B.F. Webster [1] and W. J.

Brown et al., [5]

Blob, Spaghetti Code, Conditional

Complexity, Anti-Singleton, Class

Data Should Be Private(CDSBP),

Refused Parent Bequest (RPB), Swiss Army Knife

3. RELATED WORK
Anti-patterns are derived from work on

patterns. These are considered to be a poor design

choices but not an error. Code Smells is an evidence of

the presence of anti-patterns. The term anti-pattern was

originated by Andrew Koenig, who introduces the

perception of patterns in the software engineering [3].

Both the terms anti-patterns and code smells are used

interchangeably.

Several authors studied the influence of anti-

patterns and code smells in the software systems. The

work explores the anti-patterns and code smells, in

context to software engineering activities. The first

book on smells was written by Webster [1] who

includes risks of quality assurance, coding, etc.

According to [5] attention is needed towards object

oriented systems. More than 35 smells were specified in

[5] which include the well-known design smell

―BLOB‖. The concept of refactoring was presented in

[6], due to the presence of nearly 20 code smells. The

author provided a detailed insight of term

―Refactoring‖ which is a process of altering the

software system without changing its external behavior.

The author revealed different types of code smells like

Lazy Class, Long Method, Long Parameter List,

Shotgun Surgery, etc. The above mentioned authors

provide a detailed knowledge on code smells and anti-

patterns. However the approach followed by the authors

for the identification of anti-patterns was completely

manual. It was a time consuming and error prone job

for large projects. Thus some researchers proposed the

automatic, visualization based and statistical detection

techniques.

3.1 Traditional Detection Techniques
In the traditional detection techniques the

researchers introduced the different methods using

which anti-patterns and code smells can be identified in

the system manually. This was the first step towards the

future of semi-automatic and automatic anti-pattern

detection techniques. It varies from software reading

method to metric based and template driven approach.

Some of the approaches are discussed here:

The manual detection strategy [31] was

suggested by Travassos and F. Shull [7]. It was

a software reading technique which provided

assistance in detection of smells in Object

Oriented Systems. Different types of Reading

Techniques had been included for the purpose

of detection i.e. Defect Based Reading,

Perspective Based Reading, Use Based

Reading. A project was developed by the team

of students which was reviewed on two

factors: Horizontal Review and Vertical

Review. The approach was completely manual

and time consuming.

Connie U. Smith and Lloyd G. William [8]

investigated the affect of anti-pattern God Class on the

system and show how to solve it. They also proposed

three new performance anti-patterns that often occur

within the software systems R. Marinescu [14]

introduced a metric based approach for detection of

anti-patterns. The technique was realized on tool plasma

More than 8 anti-patterns were detected with nearly

same number of techniques. The threshold values were

compared against values of metrics combined with set

operators.

M. J. Munro [16] suggested a template driven

model to detect anti-patterns. The template consists of

three components: Name of smell, Description of the

properties of code smell in text format, Heuristics for

the detection of smells. He explored the product metrics

for the apperception of ―bad smells‖ in java source

software. The paper aimed at using the metrics to

identify the peculiarity of code smell. Interpretation

rules had been applied to calculate the metrics results

which are applied to Java source-code. Hence based on

Manjeet Singh et al; East African Scholars J Eng Comput Sci; Vol-3, Iss-10 (Dec, 2020): 226-232

© East African Scholars Publisher, Kenya 228

the calculated results, location of bad smells in the java

code could be easily identified. For the implementation

a prototype tool had been used on two case studies.

H. Alikacem and H. Sahraoui [20] provided a

language which identifies the overlook of quality

factors and provides s methodology for identification of

smells in object oriented systems. The terminology

provided the guidelines with the help of fuzzy logic,

metrics, association and inheritance. However it was

not validated on any real world project. Other related

detection approaches are discussed by R. Allen and D.

Garlan [2, 4], E.M. Dashofy and A. vander Hoek et al.,

[17].

3.2 Visualization Based Detection

Techniques
In visualization based detection techniques the

researchers used different approaches i.e. Metric Based

Visualization Technique, Visualized design defect

Detection Strategy, Domain Specific Language etc.

Some of the approaches are discussed here.

Simon et al., [10] suggested a powerful

technique to inspect the internal quality of the software

using a metric based visualization approach. Four types

of source code refactoring had been analyzed: move

function, move attribute, extract class and inline class.

An enhanced metric tool- Crocodile had been used. The

approach enabled the software engineers to identify the

―code smells‖ with a click of mouse and following the

visualization rules.

Langelier et al., [19] specified a visualization

approach for the quality analysis of large scale systems.

A framework had been provided which was

implemented on open source systems. Geometrical 3D

Box was used for the representation of classes. Analysis

had been done on the values of Metrics i.e. For

Coupling, Cohesion, Inheritance and Size Complexity

CBO, LCOM5, DIT.WMC metrics had been used.

Dhambri, K. et al., [25] introduced a design

defect detection visualization based strategy. The

approach is validated for three types of anomalies-

Blob, Functional Decomposition and Divergent

Change. The study is further extending to automatic

detection based approach in the near future.

Cedric Bouhours et al., [29] worked on the

investigation of bad smells in the designing process.

The spoiled patterns had been targeted for the

identification of bad smells. Spoiled Patterns are

defined as the patterns which did not provide proper

functionality to the system for which it had been

designed. A comparison had been made between design

patterns and spoiled patterns

Naouel Moha et al., [31] specified a domain

specific language based on DECOR, for unmasking

anti-patterns. It is a mechanism which provides a track

for description of anti-patterns, by going through the

sequence of steps: Description analysis, Specification,

Processing, Detection, and Validation. It casts a

detection system, DETEX which plays role of reference

instantiation of DECOR. More than 15 types of code

smells had been identified on 11 open source systems.

3.3 Automatic Detection Techniques
In the automatic detection strategies fully

automatic detection tools had been used. Different types

of anti- patterns are identified and few of these

approaches are validated on the real world systems.

Some of the approaches are discussed here:

Yann-Gael Gueheneuc et al., [9] classified

three types of design defects i.e. Intra-Class

(within class), Inter- Class (among classes) and

Semantic Nature. A Meta model had been used

to describe design patterns. Inter- class design

defects could be resolved easily with the help

of Ptidej Tool. Eva van Emden and Leon

Moonen [11] specified an approach by which

the java source code software’s quality can be

improved. The concluded results can also be

used in the tool for automatic software

inspection. jCOSMO code smell browser have

been developed to disclose the smells in java

source code. The tool was validated for

CHARTOON system. Jagdish Bansiya and

Carl G. Davis [12] introduced a hierarchical

prototype for the evaluation of quality

attributes (reusability, flexibility,

understandability etc.) in object oriented

designs. Architectural and Detectable equities

of classes and their objects is calculated using

design metricsDAM, DCC, CAM, etc. The

model provided approach to implement it on

real world projects easily.

Yann-Gael Gueheneuc [15] introduced a tool

suite ―Ptidej‖ which have the capability to reverse-

engineer different programming languages to UML

class diagrams accurately. PTIDEJ generates the UML

class diagrams which help in identification of code

smells with a higher level of abstraction. The author

provided a brief outline of different reverse engineering

tools like Rational Rose, ArgoUML version 0.14.1,

Chava Fujaba version 4.0.1 IDEA, Borland Together,

and Womble recover.

S. Counsell and Y. Hassoun [21] described the

refactoring of seven open source Java systems-

MegaMek, JasperReports, Antlr, Tyrant, PDFBox,

Velocity and HSQLDB. The results demonstrated that

the most common re- engineering components of open

source systems are- Renaming and Moving

fields/methods among the code.

Yann Gael Gueheneuc and Giuliano Antoniol

[26] presented Design Motif Identification Multilayered

Manjeet Singh et al; East African Scholars J Eng Comput Sci; Vol-3, Iss-10 (Dec, 2020): 226-232

© East African Scholars Publisher, Kenya 229

Approach (DeMIMA) for the detection of micro

architectures (complementary to design motifs). It was a

three layered architecture in which the first two layers

provided a miniature of the source code, and the third

layer identified design patterns. The approach provided

100 % recall on the open source and industrial systems

as well, using explanation-based constraint

programming.

Stephane Vaucher et al., [28] examined

carefully the God Classes to detect the occurrence of

bad smells in the software. Xerces and Eclipse JDT

(open-source systems) - had been studied for the

investigation of God Classes.

Salima Hassaine et al., [32] introduced IDS

(Immune based Detection Strategy) - a machine

learning process which was energized from the immune

system of the human body. System could be easily

identified for the presence of code smells and anti-

patterns. Gantt Project v1.10.2 and Xerces v2.7.0 were

manually-checked for the existence of smells. Foutse

Khomh et al., [34] proposed Bayesian Detection Expert,

a Goal Question Metric (GQM) based approach to

construct Bayesian Belief Networks (BBNs) from the

descriptions of anti-patterns. BBN examined that

identify whether a class is an anti-pattern or not.

BDTEX is validated for three anti-patterns: Blob,

Functional Decomposition, and Spaghetti code

including two open source systems Gantt Project and

Xerces. The approach is also applied to two industrial

projects Eclipse & JHotDraw.

Satwinder Singh and K. S Kahlon [35]

investigated the importance of software metrics and

encapsulation for revealing the code smells. A software

metric model had been introduced that provided the

categorization of smells in the code. Firefox open

source system had been investigated for the validation

of results.

Satwinder Singh and K.S Kahlon [36]

introduced a metric model for investigating the smelly

classes in the system. The paper revealed that the results

obtained from the metrics could be helpful in

determining the code smells and faulty classes.

Francesca Arcelli Fontana et al., [37] proposed that

various software analysis code smell detection tools are

available in the market but the accuracy of their

judgment is still not very much clear. Therefore six

versions of Gantt Project had been explored for the

detection of four types of code smell, using more than

six tools.

Daniele Romano, Paulius Raila et al., [38]

studied the system by considering source code changes

(SCC) obtaining from 16 Java open source systems.

Three anti-patterns Complex Class, Spaghetti Code, and

Swiss Army Knife have been identified. It had been

detected that the number of code changes in anti-

patterns classes is greater than the number of changes

with no anti-pattern.

Foutse Khomh et al., [40] investigated the

affect of antipatterns on classes. More than 50 releases

of four systems Argo UML, Eclipse, Mylyn, and Rhino

had been considered. 13 types of anti-patterns have

been identified .The relation between the habitation of

anti-patterns with the change tendency and fault-

tendency is investigated. It had been detected that

classes participating in anti-patterns are faultier than

others.

Hui Liu et al., [41] aimed at detecting bad

smells in the code. A detection strategy had been

introduced that reduces the efforts of detecting bad

smells by a factor of 17 to 20 %.

Abdou Maiga, Nasir Ali et al., [42] described

―SMURF‖ which is an Anti-pattern Detection

Approach. More than 290 experiments have been

conducted on three systems i.e Argo UML, Xerces,

Azureus. Four types of anti-patterns Blob, Spaghetti

Code, Functional Decomposition, and Swiss Army

Knife have been identified. Author revealed that the

accuracy rate of SMURF is greater than that of DETEX

and BDTEX for detection of anti-patterns in the system.

Kwankamol Nongpong [43] carried out the

research by combining the code smells with the tools

needed for refactoring. A tool had been generated called

JcodeCanine which could easily identify the code

smells and provided with the information where the

refactoring was needed.

Fehmi Jaafar, Yann Gael Gueheneuc et al.,

[44] provided a relationship between anti-patterns and

design patterns. Three open source systems Argo UML,

JFreeChart and XercesJ had been considered for the

evaluation of relationship. It had been concluded that

relationship exists between anti-patterns and design

patterns but on temporary basis. The classes had more

error tendency which is present in such anti-patterns.

Harshpreet Kaur Saberwal et al., [45] explored

the open source systems for the identification of code

smells in the classes. An empirical model had been

designed for the detection of smells in the system. The

work carried out is validated on the versions of real

world project – JfreeChart.

Pandiyavathi and Manochandar [47] suggested

the methods for the revealing the code smells in the

system. An overview of refactoring technique had been

proposed which would be time saving. Algorithm had

been proposed to implement the refactoring methods.

Francis Palma et al., [48] specified the

detection of anti-patterns in business processes. The

rule-based approach has been detected for improving

Manjeet Singh et al; East African Scholars J Eng Comput Sci; Vol-3, Iss-10 (Dec, 2020): 226-232

© East African Scholars Publisher, Kenya 230

the quality of BPEL (Business Process Execution

Language) processes to detect BP anti-patterns. Seven

BP anti-patterns have been specified and four have been

detected with three example BPEL processes. Francis

Palma et al. [49] proposed that the quality of service

based systems get affected by the use of anti- patterns.

Based on the data collected from the SBS FraSCAti, it

was shown that the services suspicious of anti-patterns

require more maintenance that non-patterns services.

Satwinder Singh and K. S. Kahlon [50]

revealed the importance of metrics and the threshold

values in software quality assurance. Analysis of risk in

software system was explored against the threshold

values for the detection of bad smells. Hence based on

threshold values faulty classes could be easily

identified. The study is validated by the three versions

of open source systems of Mozilla Firefox.

Jiang Dexun, Ma Peijun et al., [51] suggested

that the classes which were functionally not related

could generate problems in software maintenance.

Hence the detection and refactoring of such classes is

needed. A bad smell was proposed by the author named

- Functional over related classes (FRC). A detection

strategy was suggested to indentify the bad smell. The

work was validated on four open source systems-

HSQLDB, Tyrant, ArgoUML and JfreeChart.

3.4 Empirical Detection Techniques
The following are the empirical detection

techniques which explore the work done on code smells

and anti- patters. Different types of anti-patterns have

been considered by different authors. Some of the

proposed work is given below: Mika Mantyla et al.,

[13] presented the research work done on the bad code

smells. The paper provided taxonomy for making the

smells more understandable. Author revealed different

types of classes for bad smells like Bloaters,

Encapsulators, Dispensables, Couplers, etc. A Survey

was performed at a Finnish software company, which

provided a correlation between the smells.

Foutse Khomh et al., [24] introduced the

concept of software quality maintenance by avoiding

the use of harmful antipatterns. The paper revealed that

the quality of the software is affected by use of anti-

patterns.

S. Olbrich et al., [27] considered the historical

data of Lucene and Xerces. It had been identified that

classes with the antipatterns Blob and Shotgun Surgery

have a higher change frequency than non-anti-patterns

classes.

Min Zhang, Tracy Hall et al., [33] provided a

deep insight of literature by going through more than

300 papers on code bad smells since 2000. The paper

disclosed that research work is needed on the

percussion of code smells. It had been concluded that

the smell-Duplicated Code is studied more than other

code smells.

Rabia Bashir [39] identified the impact of anti-

patterns on open source software development. The

paper revealed that the anti-patterns, which are

available in open source software development and the

solutions to avoid them.

Harvinder Kaur and Puneet Jai Kaur [46]

examined various types of anti-pattern detection

techniques i.e. Manual (metric based approach, metric-

based heuristics, ad hoc domain specific language)

Semi-Automated (DCPP matrix) and SVM based anti-

pattern detection techniques (DTEX, BTEX, SMURF).

4. CONCLUSION
In this paper a vast literature survey have been

done to limelight the affect of anti-patterns on the

source code. Our study reveals different approaches for

the detection of anti-patters and code smells. It has been

concluded that the research community have analyzed

their results on the basis of within company projects

only. The need has been identified to examine the

results for different company projects. Further it has

been analyzed that not much researchers have done

work on large projects to identify the anti-patterns.

Only few have done work on large number of anti-

patterns to disclose the impact of these smells.

Therefore the need has been generated for the

identification anti-patterns and the kinds of anti-patterns

with their impact on classes in the object oriented open

source projects. Thus the future work will also be

possible for the identification of the commonly

occurring anti-patterns in the open source systems and

to investigate the impact of anti-patterns using the

software metric. Hence the results obtained will be

beneficial to the software industry to improve the

quality of the software system by predicting the faulty

classes, during the testing phase. It helps in providing

more reliability during testing and maintenance phases

by predicting anti-patterns and faults before delivery of

the product. Thus the results produced will also be of

interests to engineers, as they can predict which classes

are to be tested more precisely. The study will be

valuable for the software engineers and managers for

improving their maintenance activities by eliciting the

code smells.

REFERENCES
1. Webster, B. F. (1995). Pitfalls of Object Oriented

Development. 1
st
 Ed. M & T Books.

2. Garlan, D., Allen, R., & Ockerbloom, J. (1995).

Architectural Mismatch: Why Reuse is so Hard.‖

IEEE Software, 12(6), 17-26.

3. Koenig & Andrew, (1995). Patterns and

Antipatterns.‖ Journal of Object-Oriented

Programming, 8, 46– 48.

4. Allen, R., & Garlan, D. (1997). A formal basis for

architectural connection. ACM Transactions on

Manjeet Singh et al; East African Scholars J Eng Comput Sci; Vol-3, Iss-10 (Dec, 2020): 226-232

© East African Scholars Publisher, Kenya 231

Software Engineering and Methodology

(TOSEM), 6(3), 213-249.

5. Brown, W. J., Malveau, R. C., Brown, W. H.,

McCormick III, H. W., & Mowbray, T. J. (1998).

Anti-patterns: refactoring software, architectures,

and projects in crisis‖. 1
st
 Ed. Wiley, New York.

6. Fowler, M. (1999). Refactoring—improving the

design of existing code‖ 1
st
 Ed. Addison-Wesley.

7. Travassos, G., Shull, F., Michael, F., & Victor, R.

B. (1999). Detecting Defects in Object-Oriented

Designs: Using Reading Techniques to Increase

Software Quality.‖ In Proceedings of 14th Conf.

Object-Oriented Programming, Systems,

Languages, and Applications, pp. 47-56.

8. Connie, U., Smith, & Lloyd, G. W. (2000).

Software Performance Anti-patterns.‖ ACM Soft.

Engg. Research, pp. 127-136.

9. Yann Gael, G., Albin-Amiot, H., & Ecole des

Mines de, N. (2001). Using Design Patterns and

Constraints to Automate the Detection and

Correction of Inter-class Design Defects.‖ Paper

accepted at TOOLS USA.

10. Simon, F., Steinbruckner, F., & Lewerentz, C.

(2001). Metrics Based Refactoring,‖ In Proceedings

of Fifth European Conf. Software Maintenance and

Re-eng., p.30

11. Eva van, E., & Leon, M. (2002). Java Quality

Assurance by Detecting Code Smells,‖ In

Proceedings of Ninth Working Conference on

Reverse Engg. IEEE.

12. Jagdish, B., & Carl, G. D. (2002). A Hierarchical

Model for Object Oriented Design Quality

Assessment.‖ IEEE Trans. on Software Eng., 28(1),

4-17.

13. Mika, M., Jari, V., & Casper, L. (2003). A

Taxonomy and an Initial Empirical Study of Bad

Smells in Code.‖ In Proceedings of the Inter.

Conference on Software Maintenance, IEEE. pp.

381-384.

14. Marinescu, R. (2004). Detection Strategies:

Metrics-Based Rules for Detecting Design Flaws.‖

In Proceedings of 20th Int. Conf. Software

Maintenance, pp. 350-359.

15. Yann Gael, G. (2004). A Systematic Study of UML

Class Diagram Constituents for their Abstract and

Precise Recovery. 11th Asia-Pacific Conference on

Soft. Engg, pp. 265-274.

16. Munro, M. J. (2005). Product Metrics for

Automatic Identification of ―Bad Smell‖ Design

Problems in Java Source-Code.‖ In Proceedings

of1
1th

IEEE Int. Software Metrics Symp.

17. Dashofy, E. M., vander Hoek, A., & Taylor, R. N.

(2005). A Comprehensive Approach for the

Development of Modular Software Architecture

Description Languages.‖ ACM Trans. Software

Eng. and Methodology, 14(2), 199-245.

18. Yann Gael, G. (2005). Ptidej: Promoting Patterns

with Patterns‖ In Proceedings of 1st ECOOP

workshop on Building a System using Patterns

(BSUP), pp. 1-9 SpringerVerlag.

19. Langelier, G., Sahraoui, H. A., & Pierre, P. (2005).

Visualization-Based Analysis of Quality for Large-

Scale Software Systems.‖ ACM Inter. Conf. on

Automated Soft. Engg, pp. 214-223.

20. Alikacem, E. H., & Sahraoui, H. (2006). Generic

Metric Extraction Framework.‖ In Proceedings of

16th Int. Workshop Software Measurement and

Metrik Kongress, pp. 383-390.

21. Counsell, S., & Hassoun, Y. (2006). Common

Refactorings, a Dependency Graph and some Code

Smells: An Empirical Study of Java OSS.‖ IEEE

Inter. Symposium on Empirical Soft. Engg. pp. 288-

296.

22. Yann-Gael, G. (2007). Ptidej: A Flexible Reverse

Engineering Tool Suite.‖ IEEE Inter. Confer. On

Soft. Maintenance, pp 529-530.

23. Naouel, M., Yann-Gael, G., Anne- Francoise Le,

M., & Laurence, D. (2008a). A domain analysis to

specify design defects and generate detection

algorithms.‖ In Proceedings of of 11th Int. Conf. on

Fundamental Approaches to Soft. Engg., Springer

New York, pp. 276-291.

24. Foutse, K., & Yann-Gael, G. (2008). Do Design

Patterns Impact Software Quality Positively?‖ In

Proceedings of 12th Conf. on Soft. Maintenance

and Reengineering IEEE pp. 274-278.

25. Dhambri, K., Sahraoui, H., & Poulin, P. (2008).

Visual Detection of Design Anomalies‖ In

Proceedings of 12th European Conf. Software

Maintenance and Reng, pp. 279283.

26. Yann, G., & Giuliano, A. (2008). DeMIMA: A

Multilayered Approach for Design Pattern

Identification.‖ IEEE Trans. on Software Eng.,

34(5), 667-684.

27. Olbrich, S., & Cruzes, D. S. (2009). ―The

evolution and impact of code sells: A case study of

two open source systems.‖ In 3rd Inter. Symposium

on Empirical Soft. Engg. and Measurement, pp.

390-400.

28. Stephane, V., Foutse, K., Naouel, M., & Yann-

Gael, G. (2009). Tracking Design Smells: Lessons

from a Study of God Classes‖ In 16th Working

Conference on Reverse Engg.

29. Cedric, B., & Herve, L. (2009). Bad smells in

design and design patterns. Journal of Object

Techn., 8(3), 43-63.

30. Naouel, M., Yann-Gael, G., Anne-Francoise Le,

M., Laurence, D., & Alban, T. (2010). From a

Domain Analysis to the Specification and

Detection of Code and Design Smells‖ Springer

Verlag (Germany), pp.345-361.

31. Naouel, M., Yann-Gael, G., Laurence, D., &

Anne-Francoise Le, M. (2010). DECOR: A Method

for the Specification and Detection of Code and

Design Smells‖ IEEE Trans. on Software Eng.,

36(1), 20-36.

32. Salima, H., Foutse, K., Yann-Gael, G., & Sylvie,

H. (2010). IDS: An Immune-Inspired Approach for

the Detection of Software Design Smells‖ 7th IEEE

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9444
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9444
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9444
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4362596
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4362596
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5654673
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5654673

Manjeet Singh et al; East African Scholars J Eng Comput Sci; Vol-3, Iss-10 (Dec, 2020): 226-232

© East African Scholars Publisher, Kenya 232

Inter. Conference on the Quality of Infor. And

Comm. Tech., pp. 343-348.

33. Min, Z., Tracy, H., & Nathan, B. (2011). Code Bad

Smells: a review of current knowledge‖ Journal

Software Maintenance Evol. Res. Pract., 23, 179–

202.

34. Foutse, K., Stephane, V., Yann-Gael, G., &

Houari, S. (2011). Bdtex: A gqm-based bayesian

approach for the detection of anti-patterns‖ J. Syst.

Softw., 84(4), 559–572.

35. Satwinder, S., & Kahlon, K. S. (2011).

Effectiveness of Refactoring Metrics Model to

Identify Smells and Error Prone Classes in Open

Source Software‖ ACM SIGSOFT Soft. Engg.

Notes, 36(5), 1-11.

36. Satwinder, S., & Kahlon, K. S. (2012).

Effectiveness of Encapsulation and Object Oriented

Metrics to Refactor Coe and Identity Error Prone

Classes using Bad Smells. ACM SIGSOFT Soft.

Engg. Notes, 37(2), 1-10.

37. Francesca Arcelli, F., Pietro, B., & Marco, Z.

(2012). Automatic detection of bad smells in code:

An experimental assessment‖ Journal of Object

Technology, 11(2), 1–38.

38. Daniele, R., & Paulius, R. (2012). Analyzing the

Impact of Anti-patterns on Change-Tendency

Using Fine-Grained Source Code Changes‖ Proc of

the 19th Working Conference on Reverse

Engineering (WCRE), IEEE Computer Society

Press.

39. Rabia, B. (2012). Anti-patterns in Open Source

Software Development‖ Int. Journal of Computer

Applications, 44(3).

40. Foutse, K., Massimiliano Di, P., Yann Gael, G., &

Giuliano, A. (2012). An exploratory study of the

impact of anti-patterns on class change- and

faulttendency‖ Springer Science Business Media,

LLC, Aug.

41. Hui, L., Zhiyi, M., Weizhong, S., & Zhendong, N.

(2012). Schedule of Bad Smell Detection and

Resolution: A New Way to Save Effort‖ IEEE

Trans. On Software Engg., 38(1).

42. Abdou, M., Nasir, A., Neelesh, B., Aminata, S.,

Yann-Gael, G., & Esma, A. (2012). SMURF: A

SVM-based Incremental Anti-pattern Detection

Approach. Presented at 19th Working Conference

on Reverse Engineering, pp. 466-475.

43. Kwankamol, N. (2012). Integrating \Code Smells

Detection with Refactoring Tool Support‖ Ph.D.

Dissertation, University of Wisconsin-Milwaukee.

44. Fehmi, J., Yann, G., Sylvie, H., & Foutse, K.

(2013). Analysing Anti-patterns Static

Relationships with Design Patterns‖ In Proceedings

ofthe First Workshop on Patterns Promotion and

Anti-patterns Prevention, EASST, 59.

45. Harshpreet, K. S., Satwinder, S., & Sarabjit, K.

(2013). Empirical Analysis of Open Source System

for Predicting Smelly Classes‖ Inter. Journal of

Engineering Research & Technology, 2(3), 1-6.

46. Harvinder, K., & Puneet Jai, K. (2014). A Study on

Detection of Anti-Patterns in Object-Oriented

Systems‖ Inter. Journal of Computer Applications,

93(5), 25-28.

47. Pandiyavathi & Manochandar. (2014). Detection of

Optimal Refactoring Plans for Resolution of Code

Smells‖ Inter. Journal of Advanced Research in

Computer and Comm. Engg., 3(5), 6-11.

48. Francis, P., Naouel, M., & Yann Gael, G. (2013).

Detection of Process Anti-patterns: A BPEL

Perspective‖ 17th IEEE Int. Workshop on

Enterprise Distributed Object Computing, pp. 173-

177.

49. Francis, P., & Le, A. (2014). Investigating the

Changeproneness of Service Patterns and Anti-

patterns‖ 7th Inter. Conf. on Service-Oriented

Computing and Applications IEEE pp. 1-8.

50. Satwinder, S., & Kahlon, K. S. (2014). Object

oriented software metrics threshold values at

quantitative acceptable risk level‖ CSI Transactions

on ICT, Springer 2(3), 191-205.

51. Jiang, D., Ma, P., Su, X., & Wang, T. (2014).

Functional over-related classes bad smell detection

and refactoring suggestions‖ International Journal

of Software Engineering & Applications (IJSEA),

5(2), 29-47.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5654673
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5654673

