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Abstract: The erroneous prediction of the speed of light in dispersive media has 

been looked upon historically as unequivocal proof that Newton's corpuscular 

theory is incorrect. Examination of his arguments shows that they were only 

directly applicable to the momentum of photons, however, leaving open the 

possibility that the cause of his mistake was the unavailability of a suitable 

mechanical theory to enable a correct light speed prediction, rather than his use of 

a particle model. It is shown that Hamilton's canonical equations of motion remove 

Newton's error quantitatively, and also lead to the most basic formulas of quantum 

mechanics without reference to any of the pioneering experiments of the late 

nineteenth century. An alternative formulation of the wave-particle duality 

principle is then suggested which allows the phenomena of interference and 

diffraction to be understood in terms of statistical distributions of large populations 

of photons or other particles. 

Keywords: De Broglie Hypothesis, Wave-Particle Duality, Newton’s Corpuscular 

Theory of Light, Huygens’ Wave Theory of Light, Hamilton’s Canonical 

Equations, Alternative Interpretation of Wave-Particle Duality. 
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I. INTRODUCTION 
The ancient dispute of physicists came to a head 

in the late 17th century. On the basis of his corpuscular 

theory of optics [1], Newton predicted that light travels 

faster in a normally dispersive medium than in free 

space. When Foucault measured the speed of light in 

water nearly 150 years after the publication of Opticks, it 

was clear that the opposite is the case, and as a result, 

belief in the particle model was virtually abandoned in 

favor of the wave theory of optical phenomena. The trend 

had been in this direction anyway since the interference 

experiments of Young [2], were reported in 1802, which 

gave strong support to the superposition principle 

introduced by Huygens, and any remaining question 

about the wave theory of light was seemingly eliminated 

in 1864 with the publication of Maxwell's 

electromagnetic theory. Yet only 40 years later, 

Einstein's interpretation of the photoelectric effect [3] in 

terms of light quanta with E = hν disturbed this 

consensus. Then in 1923 Compton was able to construct 

a quantitative theory for the scattering of x-rays by 

valence electrons of atoms [4], by using conservation of 

energy/momentum arguments which were quite 

consistent with Newton's corpuscular theory [1]. 

 

In recognition of these developments, Lewis 

[5], coined the word "photon" to denote a light quantum, 

and in succeeding years single-photon detectors have 

become commonplace in the modern physics laboratory. 

In spite of this, Newton's erroneous prediction of the 

speed of light in dispersive media is thought to be 

irrefutable evidence against a strictly particle theory of 

light [6]. Instead, the concept of duality [7], is widely 

used to describe the fact that all matter seems to behave 

as if it is composed of either waves or particles, 

depending on the type of experiment to which it is 

subjected. 

 

II. De Broglie’s Proposed Extension of the Properties 

of Light to Material Particles 

Experiments which show the interference and 

diffraction of electromagnetic radiation can only be 

explained if it is assumed to consist of waves [8]. At the 

same time, the quantum effects of radiation, such as the 

photoelectric [3] and Compton [4], effects, can only be 

explained if light is assumed to consist of particle-like 

photons. There are two key equations which succinctly 

describe the relationships between particles and waves: 

E = hν (1) 

and p = h/λ. (2) 

 

Where E and p are the energy and momentum 

of the particles and ν and λ are the corresponding 

frequency and wavelength of the waves. The wave-



 

Robert J. Buenker; East African Scholars J Eng Comput Sci; Vol-9, Iss-1 (Jan-Feb, 2026): 1-7 

© East African Scholars Publisher, Kenya   2 

 

particle duality of the electromagnetic radiation is 

implied in these two equations and it is the fundamental 

constant of quantum mechanics, h (Planck’s constant 

[9]), which appears in both of them. One way of 

describing this situation is to say that electromagnetic 

waves will, under some circumstances, behave as 

particles. Alternatively, one can say that Lewis photons 

[5], i.e. zero-rest-mass particles, will, under different 

circumstances, behave as waves. 

 

It is natural to ask [8], whether the above 

equations, which ascribe a wave and particle nature to 

electromagnetic radiation, also apply for other forms of 

matter such as electrons and atoms. This possibility was 

raised by de Broglie in 1924 [7]. He conjectured that a 

material particle might exhibit wave properties. It was 

further assumed that the above two equations which give 

particle characteristics to electromagnetic waves would 

hold equally well for a material particle, and would 

therefore ascribe the wave characteristics, i.e. the 

wavelength λ and the frequency ν, to a material particle.  

 

Experiments have confirmed the correctness of 

de Broglie’s hypothesis, so that the wave character of 

material particle is thought to be well established. 

Because the wavelength can be measured from 

interference or diffraction, it is best to concentrate our 

attention to Eq. (2). 

 

The de Broglie wavelength λ of a particle 

having momentum p = mv (m is the relativistic mass and 

v is its speed) is given by the de Broglie relation 

 λ = h/p = h/mv. (3) 

 

To test the de Broglie hypothesis, it is necessary 

to show, on the basis of experiment, that material 

particles show interference and diffraction effects. The 

wave nature of electrons was first discovered in 1927 by 

Davisson and Germer in diffraction experiments [10]. 

 

III. Light Refraction and Quantum Mechanics 

In view of the significance that has been 

attached over the years to Newton's light speed 

prediction, it is interesting to examine his line of 

reasoning in arriving at this position. His essential 

argument was that the fact that the ratio of the sines of 

the angles of incidence Θ1 and refraction Θ2 (Fig. 1) 

always have the same ratio for a given pair of transparent 

media (Snell's Law) is consistent with a force acting at 

the interface between the media and in the direction 

normal to it. Light travels in a straight line within any 

homogeneous medium, indicating that there are no 

unbalanced forces except those at interfaces between 

different media. According to his Second Law, this 

means that the component of the photon momentum 

parallel to any such interface is a constant of motion, as 

expressed by the following set of proportionalities: 

p1/p2 = n1/n2 = sinΘ2/sinΘ1, (4) 

 

Where pi is the magnitude of the photon's 

momentum in a given medium and ni is the 

corresponding refractive index. In other words, p is 

proportional [11], to n, which means, for example, that 

the photon momentum for yellow light in water is 1.33 

times greater than in free space. Consistent with this 

position, he argued that the angle of refraction of light of 

a given wavelength near the surface of the earth under 

otherwise equivalent conditions only depends on its 

angle of incidence as it enters the upper atmosphere, that 

is, it is independent of how the air pressure varies along 

the way. Newton did not use the term "momentum" 

explicitly in presenting his arguments, but preferred to 

use "velocity" instead [12]. There can be no doubt that in 

so doing, he was simply assuming that the inertial mass 

m = p/v of the corpuscles is the same in all media. This 

raises the question, however, of whether it was not 

exactly this supposition that led him astray, rather than 

the particle model itself. 

 

Mechanical theory was not sufficiently 

developed in Newton's lifetime to provide an accurate 

description of the dynamics of particles in the presence 

of external fields. The situation was greatly improved 

130 years after publication of Opticks, however, when 

Hamilton introduced his canonical equations of motion. 

It then became clear that the velocity v could be 

determined with knowledge of the momentum 

dependence of the total energy E, specifically as  

v = dE/dp (5) 

 

In the simplest case (in fact, this equation can 

easily be deduced from the Second Law and the 

definition of energy). Newton had shown that white light 

is decomposed into its component colors when it passes 

into a dispersive medium, and he clearly associated this 

phenomenon with the varying accelerations experienced 

by particles of light of different color. Since white light 

travels great distances from the sun and the stars without 

undergoing an analogous divergence, it follows by the 

same reasoning that the speed of light c has the same 

constant value for all photons in free space. Roemer had 

been able to give a respectably accurate value for c based 

on his observations of the moons of Jupiter in 1635. 

There is apparently no record of Hamilton having done 

so, but if one simply sets v=c in eq. (5) and integrates, 

the result is Einstein's well known special relativity 

equation [13], for photons in free space, 

E= pc, (6)  

 

Whereby the constant of integration is set to 

zero and serves as part of the definition of E. It would 

also have been possible to see from eq. (5) that by 

assuming m to be invariant, the standard formula of E = 

p2/2m leads to a different result (v = p/m) which is 

inconsistent with the constancy of c. This finding might 

simply have caused confusion in 1834, but today we 

know that it is indicative of the failure of nonrelativistic 

theory to describe the motion of photons. 
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In order to compute the velocity of light in 

dispersive media it is necessary to obtain a suitable 

generalization of the E = pc relation in free space. 

Newton's theory had shown that p is proportional to n 

(see Fig. 1), so the first step is simply to replace p by p/n. 

Then one needs a comparable relationship to express the 

dependence of energy on the nature of the refracting 

medium. Newton was well aware that the color of light 

rays does not change as they pass from one medium to 

another, only their direction, so the simplest assumption 

would have been and still remains that E is completely 

independent of n. In other words, there is no exchange of 

energy between the photons and a given transparent 

medium through which they travel. On this basis the 

desired generalization of eq. (6) becomes:  

E = pc/n. (7)  

Applying Hamilton's equations of motion, i.e. eq. (5), 

yields 

v = c/n - pc dn/dp /n2 = c/n - kc dn/dk/n2. (8)  

 

If one ignores the more complicated derivative 

term for the time being, it is seen that on this basis the 

speed of light in water does not increase with n as 

Newton concluded, but is actually inversely proportional 

to it, exactly as the wave theory of light had predicted. 

By assuming that the momentum of the photons is 

proportional to n, one is led by Hamilton's equations to 

conclude that their velocity will change in the opposite 

direction. Had Newton or anyone else taken this 

approach prior to 1850, the shock value of Foucault's 

experiment would have been completely eliminated and 

it would have been recognized that measurements of the 

speed of light in dispersive media are incapable of 

providing a definitive answer as to whether the particle 

or the wave theory of light is incorrect. 

 

Moreover, the best measurements of the speed 

of light in dispersive media that have been carried out 

over the years [14-16], indicate that eq. (8) is exact. To 

see this, however, it is necessary to know the relation 

between the photon momentum p and wavelength λ and 

wave vector k = 2π/λ. Newton had reported careful 

measurements [17] of "Intervals of Fits of easy Reflexion 

and Transmission" in the rings he observed at glass-air 

interfaces, and noted in his Prop. XVII that they were in 

the same proportion as the sines of incidence and 

refraction in different media. One hundred years later, 

Young [18] noted that these intervals were simply one-

half of the wavelength λ and was able to compute 

accurate values for various colors of light based on 

Newton's measurements. Because of eq. (4), this means 

that both p and n are inversely proportional to lambda 

and therefore proportional to k, so that 

p = h k /2π, (9)  

 

Where h is simply a constant of undetermined 

magnitude with units of angular momentum. This 

relation was apparently first used by Compton in 1923 

[4-19], but when substituted in eq. (8), it leads to the 

expression on the far right as derived from an otherwise 

strictly corpuscular model of light. 

 

One can only speculate why Newton did not 

deduce eq. (9) from his Prop. XVII, but the probable 

reason is that he considered it a meaningless relation 

since it combines quantities, namely momentum and 

wavelength, from in his view mutually contradictory 

theories. It is possible to carry the point further along by 

examining the fundamental relation for the phase 

velocity in the wave theory of light, 

vp = λν = ω/k = c/n . (10) 

 

The phase velocity is never measured in 

dispersive media, as will be discussed subsequently, so 

this relation simply expresses the fact that the frequency 

ω is independent of n, whereas k is proportional to it. 

Comparison with eq. (7) shows that vp is equal to E/p, 

from which one can conclude from eq. (9) that 

E = h ω/2π = h ν. (11)  

 

This is the famous relation introduced by 

Planck [9], in 1900 in his theory of blackbody radiation 

which was later used by Einstein in his interpretation of 

the photoelectric effect [3]. It follows directly from 

Newton's corpuscular theory when Hamilton's eq. (5) is 

used to compute the speed of light in dispersive media 

and thus arguably could have been known as early as 

1834, well before the dawn of the quantum age. Had this 

occurred, the aim of future experiments would have been 

much more clearly defined than it was historically, 

namely simply to measure the value of h in eqs. (9,11) to 

as high an accuracy as possible. 
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Fig. 1: Schematic diagram showing the refraction of light at an interface between air and water 

 

The relation between the angles of incidence Θ1 

and refraction Θ2 in terms of the refractive indices ni 

(Snell's Law) of the two media was viewed by Newton 

as a clear application of his Second Law of kinematics, 

according to which the component of the photon 

momentum pi parallel to the interface must be conserved. 

 

IV. Assumptions of the Wave Theory 

Having shown that the exact dependence of the 

speed of light on refractive index n can be derived from 

the particle model, it is instructive to consider how the 

same result is obtained in the wave theory. Application 

is made of Rayleigh's theory of sound [20], and its 

explanation of how beats arise when two waves of equal 

amplitude but slightly differing frequency and 

wavelength interfere. Using trigonometric relationships, 

it was shown that two distinct wave motions result, that 

of the carrier (wavelets) propagating with the phase 

velocity obtained from the average of the two 

frequencies and wavelengths, and that of an envelope or 

wave group characterized by their differences, ∆ω and 

∆k. The group velocity vg is thus the ratio of the latter 

two quantities or dω/dk in the limit of infinitesimal 

differences. This derivative can be evaluated from eq. 

(10) in the case of light refraction [21], and the result is 

identical with the observed light speed relation given in 

eq. (8). 

 

To justify this approach, it is necessary to 

assume that whenever monochromatic light falls upon a 

dispersive medium, waves of slightly differing ω and k 

are always formed and it is the speed of the resulting 

wave groups which is determined in experiments such as 

Foucault's. It should be noted, however, that the 

corresponding ∆ω and ∆k quantities have never been 

observed experimentally. This is explained by claiming 

that these differences are simply too small to be 

measured, but this means that both the period and the 

wavelength of the wave groups are essentially infinitely 

long. At the same time, the frequency and wavelength of 

the monochromatic light are observed, but their 

corresponding (phase) velocity is also never measured in 

refractive media. This situation is unlike any of the 

classical applications of Rayleigh's theory to sound and 

water waves. When two musical instruments are slightly 

out of tune, both the average tone and the characteristic 

beat frequency are easily audible. When a rock is 

dropped into a pond, both wavelets and wave groups are 

clearly visible. Arguing that ∆ω and ∆k are too small to 

be observed for light waves still raises the question as to 

why the associated group velocity should be measured if 
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one has to wait an infinitely long time to observe a 

complete wave group unit. In short, the supposed 

perturbation of monochromatic light waves in refractive 

media may be purely hypothetical. 

 

The dω/dk of the wave theory is exactly equal 

to dE/dp by virtue of eqs. [9,11], and so the exact light 

velocity expression of eq. [8] is obtained from it. In the 

particle theory of light, there is no need to argue that 

photons do not all have the same velocity in a given 

medium to arrive at the same result [22, 23]. Formally, 

one simply needs to know the dependence of their energy 

on momentum to evaluate their speed by means of eq. 

[5]. The ratio of the speeds of a single photon in free 

space and in a refractive medium, which is traditionally 

referred to as the group index of refraction ng, can be 

obtained directly from this expression as 

ng = c/v = d(pc)/dE = d(nE)/dE = n + E dn/dE = n + ω 

dn/dω, [12]  

 

When used in conjunction with eqs. [7,11]. In 

recent experiments [24,25] quantum interference effects 

have been exploited to produce very steep variations in 

dn/dω in order to reduce the speed of light to as low as 

17 ms-1. Despite the quite large values of dn/dω attained 

in these investigations, the refractive index itself remains 

very close to unity throughout, and thus according to eq. 

[4] the corresponding photon momenta are virtually 

unchanged relative to their values in free space. The 

effect of the electromagnetically induced transparency in 

these experiments is therefore to increase the inertial 

mass of a single photon by seven orders of magnitude 

without greatly altering either its energy or momentum. 

 

V. Statistical Interpretation of Duality 

Realization that a proper treatment of the 

motion of photons does account quantitatively for the 

measured variations of the speed of light in refractive 

media removes one of the most fundamental objections 

against the atomistic theory of matter proposed by 

Democritus and his followers in ancient Greece and later 

espoused by Newton in his corpuscular model. The 

quantum mechanical concept of wave-particle duality 

[7], by contrast, holds that matter behaves as particles in 

some experiments but as waves in others, and as such can 

be viewed as a compromise between two theories which 

were traditionally thought to be mutually exclusive. 

Nonetheless, it is argued that because of the Heisenberg 

uncertainty principle, there can be no such thing as a 

perfectly localized particle. In this view, a "particle" is 

simply a particularly localized wave packet (a quantized 

state of the electromagnetic field), so from a purely 

philosophical point of view, duality is heavily slanted 

toward the wave theory of matter. 

 

It is possible to make a different interpretation of 

quantum mechanical duality, however, one which is far 

more consistent with atomistic principles:  

Some experiments are so precise (photoelectric 

and Compton effects, the refraction of light and 

single-photon counting) that they reveal the 

elementary nature of matter in terms of 

particles, while others (interference and 

diffraction as the primary examples) are only 

capable of giving information about the 

statistical distribution of particles in space and 

time.  

 

The latter distribution is given in the Born 

interpretation [26], as ΨΨ*, the absolute square of the 

quantum mechanical wave function. Accordingly, the 

uncertainty principle merely states that if all that is 

known about a collection of indistinguishable particles is 

that they each possess the same momentum, then 

quantum mechanics can only say that they are no more 

likely to be found in one location than in any other at any 

given time. A snapshot taken of a large ensemble of such 

entities will always appear the same, even though one 

knows that from one moment to the next there is a 

constant exchange of particles in any given location, 

since they are all moving with the same known velocity. 

 

In an interference or diffraction experiment, if 

the intensity of the beam is small and detection is made 

with a device such as a photographic plate, the 

distribution observed early in the counting procedure 

will vary significantly from one trial to another. If the 

experiment is continued for a sufficiently long period of 

time in each case, however, the pattern of detected 

objects will stabilize to agree completely with quantum 

mechanical ΨΨ* predictions. Moreover, if the intensity 

is lowered far enough, single particles can always be 

detected one at a time [27], which is probably the 

strongest experimental argument for a purely atomistic 

theory of matter. 

 

In this view, a single atom, molecule, photon, or 

electron is not vibrating with a definite frequency and 

wavelength. Rather, the k and the ω in eqs. [9] and [11] 

are the parameters in Ψ that specify the statistical 

distribution that many identical particles of this kind 

possess as an ensemble. One needs a significantly large 

number of such objects in order to obtain sufficiently 

reliable values for ω and k from experimental 

observations, whereby the period of time over which 

these measurements are made is not a key factor in such 

determinations. As in other applications of statistics, the 

resulting distributions may be quite inadequate for 

predicting the behavior of individuals, but they provide 

an unerring guide for trends within very large 

populations. Accordingly, the wave packet bears the 

same relationship to the particle as the histogram does to 

a member of a sample whose statistical distribution it 

represents. The latter is a real object, whereas the former 

is only a mathematical abstraction. A light wave is 

certainly real, but in analogy to an ocean wave containing 

many water molecules, it is a collective body whose 

elementary constituents are single photons. 

 



 

Robert J. Buenker; East African Scholars J Eng Comput Sci; Vol-9, Iss-1 (Jan-Feb, 2026): 1-7 

© East African Scholars Publisher, Kenya   6 

 

It should also be mentioned that there is a 

simple explanation for the polarization of light in the 

particle model. [28] Wigner , has shown that because of 

relativistic considerations, although the angular 

momentum quantum number of photons is J=1, only 

their MJ=+1 and -1 components are ever observed, and 

therefore that the two polarizations of light can be 

distinguished on this basis. Furthermore, vacuum 

fluctuations in quantum electrodynamics can also be 

understood in a qualitative manner by assuming that the 

condensed Bose-Einstein state of light consists of real 

photons of zero energy [29] that are unobservable 

because of eqs. [9,11]. 

 

Two other common objections to such a 

statistical interpretation of quantum mechanics need to 

be mentioned briefly. In a number of key applications, it 

is found that there is a finite probability for particles to 

exist in regions where they are classically forbidden, 

such as for the harmonic oscillator or in tunneling 

processes. When a measurement is carried out in the 

classically forbidden region, the value expected for the 

potential energy V from classical mechanics will be 

obtained, but in the process the wave function is changed 

along with its total energy [29], so that nothing prevents 

the corresponding kinetic energy T from being positive 

and therefore classically allowed. By the same token, 

prior to the measurement, there is no justification for 

computing either T or V by classical means because the 

wave function is only an eigenstate of the total 

Hamiltonian (energy), so one also cannot be certain that 

T must be negative outside the classically allowed region 

in this case. 

 

Finally, it has also been argued that the results 

of the Young double-slit experiment are inconsistent 

with such a statistical interpretation [31, 32], of quantum 

mechanics. It is assumed in essence that a single photon 

does not have the capacity to go through two open slits 

on the way to the detector, but that a wave does. A 

thorough analysis of the observed data advises that 

greater caution be exercised on this point, however. If 

one also employs very small intensities in this 

experiment and detection is again made with a 

photographic plate or its equivalent placed behind the 

screen which contains the slits, it is found that the 

resulting distribution accumulates point by point in a 

thoroughly random fashion. Stopping the counting at a 

relatively early stage always produces a series of distinct 

points on the photographic plate, and not a continuous 

wave distribution. If only photons (or electrons or atoms 

or molecules) are counted in the statistics for the case 

when both slits of the Young apparatus are open, 

eventually the well-known interference pattern will 

result. 

 

This, in turn, is quite different from what is 

measured when only those events are counted which 

occur when just one of the holes is open. More 

importantly, adding the results for the two opposing 

individual single-slit experiments gives a distribution 

which is quite distinct from that which results when both 

slits are open simultaneously. Moreover, the holes can be 

opened and closed many times during the passage of the 

light or electron beam to the detector, but all that matters 

is the conformation of the slits at the time of actual 

passage through the screen. In other words, at the time 

the matter is emitted from the source, the intensity 

pattern which will eventually be observed after sufficient 

accumulation at the detector is not predictable with 

certainty unless one knows what the conformation of slits 

will be at the instant of subsequent passage through the 

screen. 

 

In short, there seems to be no means of 

understanding this series of observations satisfactorily 

without invoking some undetected object or interaction 

which ultimately determines the outcome of the 

experiment. Under the circumstances, it seems fairer to 

admit that the nonlocal character [33], of the interaction 

between system and measuring device in this case is not 

fully explained by either the wave or particle models. It 

is more properly considered as a separate issue, and, just 

as the light dispersion experiments discussed first, should 

not be used to rule out either of them as a theory for the 

elementary composition of matter [34]. 

 

VI. CONCLUSION 
Newton saw a clear application of his Second 

Law in the light refraction experiments he had carried 

out. The irony is that by failing to distinguish between 

trends in momentum and velocity, he was led to a 

prediction that eventually damaged the scientific 

reputation of his Opticks and directed attention to the 

competing theory of matter he so disliked. In the present 

work, it has been shown that the correct expression for 

the velocity of light in refractive media is obtained by 

applying Hamilton's canonical equations of motion to 

Newton's corpuscular theory. Moreover, the key 

quantum mechanical equations, E = hω/2π and p = h 

k/2π, can be deduced from Newton's own observations 

on this basis, without reference to any of the pioneering 

experiments carried out at the end of the 19th century. 

What needs to be emphasized from this exercise is not 

just speculation about how much earlier key theoretical 

principles might have been deduced, but more 

importantly, the fact that it shows that standard 

arguments which have hitherto been brought against the 

atomistic theory of matter because of Newton's optical 

experiments are totally without foundation. Recognition 

of this point should lead to a thorough examination of 

both the positions that perfectly localized particles are 

not ruled out by the uncertainty principle, and that 

experiments such as interference and diffraction can 

indeed be explained on the basis of Newton's corpuscular 

model. 
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