## EAS Journal of Pharmacy and Pharmacology

Abbreviated Key Title: EAS J Pharm Pharmacol ISSN 2663-0990 (Print) & 2663-6719 (Online) Published By East African Scholars Publisher, Kenya

Volume-1 | Issue-5 | Sept-Oct-2019 |

#### **Research Article**

# Estimation of the Appropriate Alloxan Dose for Induction of Diabetes in Albino Mice

Samira<sup>1\*</sup>, A alacrouk, Seham<sup>1</sup>, T.M.Oshkondal, Fadia<sup>1</sup>, Taufik M, Khaled<sup>3</sup>, Milad Aburas, Mustfa Saieh<sup>4</sup>, Ameerah<sup>2</sup>, Shaeroun, Salah<sup>3</sup>, Bahroun Ali<sup>1</sup>, Elahrash<sup>2</sup>, Hajir Alwalani<sup>2</sup>

<sup>1</sup>Faculty of Medicine / Zawia University, Libya <sup>2</sup>Faculty of Science /Zawia University, Libya

<sup>3</sup>Medical research center / Zawia city, Libya

<sup>4</sup>Faculty of Science /Gharyan University, Libya

\*Corresponding Author Samira

**Abstract:** Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycemia due to an absolute or relative deficit in insulin production or action. Diabetic animal models are important tools to understand the pathogenesis and complication of disease. In addition to study the effect and action of many anti diabetic agents. Alloxan has been used as diabetic inducer in experimental animal with different protocols and doses. The purpose of this study is to estimate the Alloxan diabetic dose appropriately according to body weight of animal. In this study 12 male albino mice body weight 30-37.7gm were divided into 3 groups "A, B, C" each group with 4 animals. Alloxan injected intraperitoneally with 3 different protocols to each group. In group A the dose was (150mg-100mg-150mg)/kg, (100mg-150mg-150mg)/kg for group B and (150mg-150mg)/kg in group C in two days interval respectively to induce and maintain diabetes. Blood glucose and body weight was measured at baseline before injection then 48, 72, 96h after injection .Results in group A showed that blood sugar increased gradually after first and second injection, and decreased blood sugar after third dose. In group B the blood sugar increased after first dose and started gradual decreased after second dose then increased again after third dose. On other hand group C showed that the blood sugar gradual elevated after each injection. These results indicate that injection of Alloxan at doses (150-150mg)/kg is more practical as diabetogenic dose in albino mice.

Keywords: Alloxan dose, Diabetes mellitus, albino mice.

#### **INTRODUCTION:**

Diabetes mellitus is chronic metabolic disorder characterized by hyperglycemia due to an absolute or relative deficit in insulin production or action. Diabetes mellitus is subdivided in to diabetes type 1 and type 2 according to pathogenesis of disease .Diabetes mellitus has strong association with genetic predisposition, obesity and stress life style (Song, I. et al., 2015). Recently, diabetes mellitus become high prevalence worldwide, and many serious complication occurs due hyperglycemia, chronic including to retinopathy, nephropathy, neuropathy and cardiovascular complication (3).Many laboratory researches of diabetes established various animal models to study the pathogenesis ,complication of the disease and in the same time study the effects of anti-diabetic agents.

Alloxan is one of chemical agents that used to induce diabetes mellitus in albino mice. The diabetogenic dose of Alloxan depends mainly on the age, specie and weight of mice. Moreover, many experimental researches were designed to estimate the appropriate dose of Alloxan for induction of diabetes. However the results were controversial. Therefore this study was performed for this purpose (Macdonald Ighodaro, O. *et al.*, 2017).

### MATERIAL AND METHODS

#### Animal

Healthy Albino mice male weighted 30-37.7 g were used and has been kept under observation for 4 wk in animal house under controlled condition in standered cages with free access to food and water. Samples





collected for blood glucose and body weight at zero time, 48, 72, and 96 hour after injection.

#### **Chemicals:**

Alloxan monohydrates were obtained from SIGMA-ALDRICH from Tunisia, other chemical and glucose strips from research center in Zawia Libya.

#### **Experimental design**

Twelve albino mice divided in 3 groups each group with 4 mice were exposed to overnight fasting.

Group A was injected with (150mg-100mg-150mg)kg of alloxan, group B was injected with (100mg-150mg-150mg)kg of Alloxan, group C was injected with(150mg-150mg)kg of Alloxan with two days interval respectively to induce and maintain diabetes. Blood glucose and body weight were estimated before injection and then 48, 72,96h. And injected after 48, 72, 96 hour. Alloxan was prepared with 0.5 ml of citrate buffer at pH 6.8. Also, the groups of mice were injected intraperitoneal with alloxan.

#### **Statistical Analysis:**

The data was presented as Mean ± S.E.M. One Way Analysis of variance (ANOVA) was

performed on means to determine the significant (p < 0.05) difference among the groups.

#### **RESULT:**

During the experiment the dose of Alloxan based mainly on weight of mice. Most of mice became diabetic after first injection in all groups at dose 150 in group A, dose 100mg in group B and 150mg in group C.

In group A the blood sugar increased gradually except the mouse No 4 the blood sugar was very high Bs=410mg and this may explain genetic variability to response to Alloxan. Blood sugar getting higher after second injection 100mg but decreased after third dose 150mg.The result indicate that there is no statistically significance( p value >0.05).

In group B the blood sugar increased after first dose(100mg) and then decreased after second dose 150mg and increased again after third dose (150mg).The result indicate that there was no statistically significance (p value >0.05).

Group C was injected with 2 doses 150 mg-150 mg. The results showed that blood sugar increased gradually at end of 96h after injection. The p value was (0.074) significant as compared with other groups.

|       | Group A                                                                            |          |           |          |             |             |        |        |  |  |  |  |
|-------|------------------------------------------------------------------------------------|----------|-----------|----------|-------------|-------------|--------|--------|--|--|--|--|
|       | Descriptives                                                                       |          |           |          |             |             |        |        |  |  |  |  |
|       | sugar.after                                                                        |          |           |          |             |             |        |        |  |  |  |  |
| 4     | 4 N Mean Std. Deviation Std. Error 95% Confidence Interval for Mean Minimum Maximu |          |           |          |             |             |        |        |  |  |  |  |
|       |                                                                                    |          |           |          | Lower Bound | Upper Bound |        |        |  |  |  |  |
| 150   | 4                                                                                  | 210.5000 | 133.99627 | 66.99813 | -2.7180-    | 423.7180    | 131.00 | 410.00 |  |  |  |  |
| 100   | 4                                                                                  | 242.5000 | 181.77367 | 90.88683 | -46.7425-   | 531.7425    | 145.00 | 515.00 |  |  |  |  |
| 150   | 4                                                                                  | 198.5000 | 123.40313 | 61.70157 | 2.1381      | 394.8619    | 115.00 | 382.00 |  |  |  |  |
| Total | 12                                                                                 | 217.1667 | 135.78515 | 39.19780 | 130.8929    | 303.4404    | 115.00 | 515.00 |  |  |  |  |

| ANOVA          |                                      |    |           |      |      |  |  |  |  |
|----------------|--------------------------------------|----|-----------|------|------|--|--|--|--|
| Sugar. after   |                                      |    |           |      |      |  |  |  |  |
|                | Sum of Squares df Mean Square F Sig. |    |           |      |      |  |  |  |  |
| Between Groups | 4138.667                             | 2  | 2069.333  | .094 | .911 |  |  |  |  |
| Within Groups  | 198675.000                           | 9  | 22075.000 |      |      |  |  |  |  |
| Total          | 202813.667                           | 11 |           |      |      |  |  |  |  |



|       | Group B      |          |           |                            |            |               |         |         |  |  |  |  |
|-------|--------------|----------|-----------|----------------------------|------------|---------------|---------|---------|--|--|--|--|
|       | Descriptives |          |           |                            |            |               |         |         |  |  |  |  |
|       | Sugar. after |          |           |                            |            |               |         |         |  |  |  |  |
|       |              |          | Std.      | Std. Std.<br>riation Error | 95% Confid | ence Interval | Minimum | Movimum |  |  |  |  |
|       | N            | Mean     |           |                            | for N      | /Iean         |         |         |  |  |  |  |
|       | 19           |          | Deviation |                            | Lower      | Upper         | Winnin  | Waximum |  |  |  |  |
|       |              |          |           |                            | Bound      | Bound Bound   |         |         |  |  |  |  |
| 100   | 4            | 149.5000 | 11.09054  | 5.54527                    | 131.8525   | 167.1475      | 141.00  | 165.00  |  |  |  |  |
| 150   | 4            | 142.2500 | 14.45395  | 7.22697                    | 119.2505   | 165.2495      | 127.00  | 159.00  |  |  |  |  |
| 150   | 4            | 147.5000 | 15.80084  | 7.90042                    | 122.3573   | 172.6427      | 124.00  | 158.00  |  |  |  |  |
| Total | 12           | 146.4167 | 12.99271  | 3.75067                    | 138.1615   | 154.6718      | 124.00  | 165.00  |  |  |  |  |

| ANOVA                                |          |    |         |      |      |  |  |  |  |
|--------------------------------------|----------|----|---------|------|------|--|--|--|--|
| Sugarafter                           |          |    |         |      |      |  |  |  |  |
| Sum of Squares df Mean Square F Sig. |          |    |         |      |      |  |  |  |  |
| Between Groups                       | 112.167  | 2  | 56.083  | .289 | .755 |  |  |  |  |
| Within Groups                        | 1744.750 | 9  | 193.861 |      |      |  |  |  |  |
| Total                                | 1856.917 | 11 |         |      |      |  |  |  |  |



Group C Descriptives

|                              | Ν  | Mean     | Std. Deviation | Std. Error | Minimum | Maximum |
|------------------------------|----|----------|----------------|------------|---------|---------|
| 150                          | 4  | 125.7500 | 9.63933        | 4.81966    | 113.00  | 135.00  |
| 150                          | 4  | 145.0000 | 7.61577        | 3.80789    | 138.00  | 153.00  |
| with out<br>injection 2 days | 4  | 167.2500 | 36.22499       | 18.11250   | 143.00  | 221.00  |
| Total                        | 12 | 146.0000 | 26.69695       | 7.70675    | 113.00  | 221.00  |

| ANOVA          |                                      |    |          |       |      |  |  |  |  |
|----------------|--------------------------------------|----|----------|-------|------|--|--|--|--|
| Sugar. after   |                                      |    |          |       |      |  |  |  |  |
|                | Sum of Squares df Mean Square F Sig. |    |          |       |      |  |  |  |  |
| Between Groups | 3450.500                             | 2  | 1725.250 | 3.537 | .074 |  |  |  |  |
| Within Groups  | 4389.500                             | 9  | 487.722  |       |      |  |  |  |  |
| Total          | 7840.000                             | 11 |          |       |      |  |  |  |  |



#### **DISCUSSION:**

Alloxan is one of the effective diabetogenic inducer in diabetic researches. The dose depends mainly on age, species and weight of models and route of administration (Macdonald Ighodaro, O. et al., 2017) There are many route of administration e.g. subcutaneous (Akhtar, N. et al., 2018), intraperitoneal or intravenous in one dose or multiple doses .In this study 3 different protocols the Alloxan injected intraperitoneal in 12 albino mice and most of mice became diabetic after first injection that proof the effect of Alloxan as diabetogenic (Akhtar, N. et al., 2018) this may be explained by accumulation of Alloxan in beta cells and necrosis of cells. Maintenance of blood sugar elevation in animal model is the most important factor to estimate the appropriate dose for Alloxan to induce diabetes (Macdonald Ighodaro, O. et al., 2017). In our study we showed that multiphase response of hyperglycemia this may be due to the one of most important struggling of Alloxan is auto-reverse of hyperglycemia and animal model become non diabetic.

In protocol C at dose 150mg twice is sufficient to induce and maintain diabetes in albino mice (Macdonald Ighodaro, O. *et al.*, 2017).

#### REFERENCE

- 1. Song, I., Patel, O., Himpe, E., Muller, C. J., & Bouwens, L. (2015). Beta cell mass restoration in alloxan-diabetic mice treated with EGF and gastrin. *PloS one*, *10*(10), e0140148.
- Akhtar, N. et al., 2018. Evaluation of antidiabetic activity of Ipomoea batatas L. extract in alloxaninduced diabetic rats. *International journal of immunopathology and pharmacology*, 32, 2058738418814678.
- Macdonald Ighodaro, O., Mohammed Adeosun, A., & Adeboye Akinloye, O. (2017). Alloxan-induced diabetes, a common model for evaluating the glycemic-control potential of therapeutic compounds and plants extracts in experimental studies. *Medicina*, 53(6), 365-374.