East African Scholars Journal of Medical Sciences

Abbreviated Key Title: East African Scholars J Med Sci ISSN: 2617-4421 (Print) & ISSN: 2617-7188 (Online) Published By East African Scholars Publisher, Kenya OPEN ACCESS

Volume-8 | Issue-11 | Nov-2025 |

DOI: https://doi.org/10.36349/easms.2025.v08i11.001

Original Research Article

Depression and its Risk Factors Among Type 2 Diabetics in Enugu, Nigeria

Ezeme Mark Sunday¹, Abonyi Michael Chinweuba^{2*}, Ohayi Robsam Ajogwu³, Eneh Chizoma Ihuarula⁴, Okoli Paul Chibuike¹, Eze Gerald Uchenna¹, Okpara Titus Chukwubuzo², Mba Uwakwe Cosmas⁵, Odinka Jaclyn⁶, Eya Jonathan⁷, Mba Sunday Gabriel⁸, Chime Onyinye Hope⁹

Article History

Received: 07.09.2025 **Accepted:** 31.10.2025 **Published:** 05.11.2025

Journal homepage: https://www.easpublisher.com

Abstract: *Background:* Most of the emphases on treatment of Diabetes Mellitus (DM) have been on physical symptoms neglecting the psychological problems that also arise while one suffers Diabetes. Aim: To demonstrate the occurrence of depression and the associated risk factors in patients with type 2 diabetes mellitus (T2DM). Method: It was a cross-sectional study of consecutive DM subjects who came for their routine follow-up visit at the out-patient department of Enugu State University Teaching Hospital (ESUT), Nigeria. They were interviewed with clinical and sociodemographic questionnaire to obtain information about their age, gender and employment status, HbA1c levels, duration of illness (type 2 diabetes), age at diagnosis, comorbidity, complications of diabetes. Patient's Health Questionnaire-9 (PHQ-9) was used to assess for the presence of depression among the participants. Data collected was analyzed to find the mean, standard deviation and establish associations using Chi-Square test, T-test, **Result:** About 16% of the participants were depressed, and majority of them (82%) were females. Most of those with complications (73.5%), and comorbid conditions (59.6%) were not depressed. Association of gender, presence of complications and comorbidities, age of onset of diabetes, time duration of diabetes, HbA1c level and employment status to the manifestation of depression were not statistically significant. Conclusion: It is likely that the actual risk factors for depression among the diabetics are internal factors like one's genetic constitution and/or personality traits in this environment. Therefore, a more elaborate prospective studies considering the contribution of genetic and personality characteristics to development of depression in diabetics is recommended.

Keywords: Depression, Diabetes Mellitus, Risk factors.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

Diabetes mellitus (DM) is a chronic endocrine disorder resulting from either failure of the pancreas to produce enough insulin (type 1) or inability of the body to utilize the produced insulin (type 2) [1, 2]. Diabetes mellitus is now rapidly rising as a worldwide epidemic. It has been projected to be the seventh most important cause of death worldwide by 2030 [3]. The diabetes population has rapidly rose from 108 million in 1980 to 422 million in 2014 globally and the predominance is seen mostly in low and middle-income countries [4].

Depression is defined by the World Health Organization as "a common mental disorder, characterized by sadness, loss of interest or pleasure, feelings of guilt or low self-worth, disturbed sleep or appetite, feelings of tiredness, and poor concentration." [5]. Depression is among the most common mental disorders affecting around 350 million people in the world [5]. In a cross-sectional study of 200 participants, using Schedule for Clinical Assessment in Neuropsychiatry (SCAN) to compare the prevalence of depression among diabetic and non-diabetic patients in a

¹Department of Psychiatry, College of Medicine, Enugu State University, Enugu, Nigeria

²Department of Internal Medicine, College of Medicine, Enugu State University, Enugu, Nigeria

³Department of Pathology, College of Medicine, Enugu State University, Enugu, Nigeria

⁴Department of Paediatrics, College of Medicine, Enugu State University, Enugu, Nigeria

⁵Department of Surgery, College of Medicine, Enugu State University, Enugu, Nigeria

⁶Department of Psychology, University of Nigeria, Nsukka

⁷Department of Anaesthesia, Enugu State University, Enugu, Nigeria

⁸Department of Obstetrics and Gynaecology, College of Medicine, Enugu State University, Enugu, Nigeria

⁹Department of Public Health, College of Medicine, Enugu State University, Enugu, Nigeria

Nigerian teaching hospital, 30% of diabetic patients met SCAN diagnosis of clinical depression, while only 9.5% were depressed among the control group [6]. Also in Jos, Nigeria, using Halmiton Depression rating scale to assess 160 diabetic participants, 19.4% of them qualified for DSM-IV diagnosis of Major Depressive disorder [7]. Depression in diabetes is persistent and/or recurrent. In longitudinal and follow-up studies, the rates of persistence of depression or recurrence have been reported to range widely, between 11.6% and 92%, depending on sample sizes, depression diagnosis criteria and depression classification (major depression or elevated depressive symptoms) [8]. Lustman et al., followed up 25 patients who participated in a depression treatment clinical trial with Nortriptyline vs Placebo, identified persistence or recurrence of depression among 23 (92%) of them using Diagnostic Interview Schedule. Even after successful treatment, recurrence was also found in 80% of them [9]. A randomized controlled trial (RCT) in 164 diabetic patients assigned to collaborative care intervention against 165 diabetic patients assigned to usual care, Katon et al., [10], revealed that depressive symptoms - assessed with Hopkins Symptoms Checklist 90 (SCL-90) - persisted (persistence was defined as p<50% decrease in SCL-90 score) in 59.9% of the intervention group compared to 68.3% of the usual care group at the 12-month follow-up [11].

Recent studies demonstrated there is no common genetic factors linked to the positive association between depression and Type 2 diabetics mellitus (DM2) [12, 13]. However, various environmental factors (epigenetic factors) may activate common pathways which aggravate the occurrence of both depression and diabetes. For example low socioeconomic status, poor sleep, physical inactivity and diet increase the odds for developing Type 2 diabetes mellitus [14], and also common risk factors for depression [15]. In other words, chronic stress leads to disturbance and activation of hypothalamus-pituitary-adrenal axis (HPA resulting in excess cortisol that disrupts neurogenesis in the hippocampus [16], a region involved in depression as well as DM2 [17]. Furthermore, chronic stress induces dysfunction of immune responses with consequent outpouring of inflammatory cytokines which negatively interact with pancreatic β-cells, increase insulin insensitivity, thereby promoting the appearance of DM2 [18, 19].

As regards causation, the relationship between diabetes mellitus and depression is bidirectional. However, the tendency of depression leading to development of diabetes mellitus appears to be stronger, with relative risk of 1.6 [20], while the direction of diabetes mellitus predisposing to depression has the relative risk of 1.2 [20, 21]. Risk factors associated with the presence of depression in patients with diabetes include female sex, younger age, not having a spouse, poor social support, lower education, low socioeconomic status, poor glycemic control, presence of diabetic

complications, presence of medical comorbidity, physical impairment and previous history of depression [22-26]. However, in Jos, Nigeria Agbir *et al.*, 2010 [7], reported no association between depression and age, educational attainment, employment status, place of residence and monthly income; but there was an association with sex, marital status and poor relationships with spouse.

This study was aimed at creating awareness about the rate of depression among type 2 diabetes patients and the associated risk factors in ESUTH Enugu.

METHODOLOGY

Procedure

It was a cross-sectional study of consecutive attendees of type 2 diabetes mellitus patients who came for their routine follow-up visit between January and March 2025 at the out-patient department of Enugu State University Teaching Hospital (ESUT), who gave consent to participate in the study. They were interviewed with clinical and sociodemographic questionnaire to obtain information about their age, gender and employment status, HbA1c levels, duration of illness, age at diagnosis, comorbidity, complications of diabetes e.t.c. Patient's Health Questionnaire-9 (PHQ-9) was used to assess for the presence and severity of depression among the participants.

Data collected was entered into the Statistical Package for Social Science (SPSS) version 20 and subsequently analyzed to find the mean, standard deviation; and establish associations using Chi-Square test, T-test.

PHQ-9 Questionnaire

This is a self administered questionnaire, and a depression module that scores each of the nine Diagnostic and Statistical Manual of Mental Disorders version IV (DSM-IV) criteria ``0`` (not at all) to ``3`` (nearly every day). The total scores of 5, 10, 15 and 20 are cut-off points for mild, moderate, moderately severe and severe depression respectively. Adewuya *et al.*, [27], has validated the use of PHQ-9 in Nigeria and found internal consistency of questions within PHQ-9 to be 0.85, concurrent validity with BDI (r= 0.67, P=0.0001). It also had good (r= 0.89, P= 0.001) test-retest reliability.

RESULTS

Table 1: Female participants constituted the majority (69%), and most of them were retired civil servants. Complications from diabetes and participants having comorbid conditions were prevalent. The mean age of the participants was 59.4 years, and the diabetes has lasted an average of 8years among the participants.

Table 2: About 16% of the participants were depressed, and majority of them (82%) were females. Majority of those with complications of diabetes

(73.5%), and 59.6% of participants with comorbid conditions were not found to be depressed. But all the depressed participants had one complication of diabetes or the other. Also majority of early onset diabetes were not depressed. However, these findings were not

statistically significant. As regards the duration of illness (diabetes), age at onset of diabetes and their HbA1c status, no statistically significant difference was found between the depressed and non-depressed diabetes.

Table 1: Clinical and sociodemographic variables of the participants

Variables	Frequency (N)	Percentage (%)
Gender: Male	53	31
Female	118	69
Employment: Yes	75	43.9
No	96	56.1
Occupation: Civil servant	30	17.5
Trading	32	18.5
Farming	13	7.6
Artisan	6	3.5
Retired	70	40.9
Others	20	11.7
Complications: Yes	153	89.5
No	18	10.5
Comorbidity: Yes	126	73.7
No	45	26.3
Age (Years): Mean \pm SD = 59.4 \pm 11.6		
Range (years) = 23 - 82		
Age at diagnosis (Years): Mean \pm SD = 51.4 \pm 12.3		
Range (Years) = 16 - 79		
Duration of illness (Years): Mean \pm SD = 8.0 ± 6.5		
Range (Years) = $0.1 - 37$		
HbA1c (%): Mean \pm SD = 9.0 \pm 2.7		
Range $(\%) = 4 - 14.1$		

Table 2: Association of the variables among depressed and non-depressed participants

Variables	Non-Depressed N (%)	Depressed N (%)	\mathbf{X}^2	t	р	Df
Gender						
Male	48 (28.1)	5 (2.9)	2.0	-	0.16	1
Female	95(55.6)	23 (13.5)				
Complications						
Yes	125 (73.5)	28 (16.5)	2.5	-	0.11	1
No	17 (10)	0 (0)				
Comorbidity						
Yes	102 (59.6)	24 (14.0)	2.8	-	0.18	1
No	41 (24.0)	4 (2.3)				
Employment						
Yes	68 (39.8)	7 (4.1)	4.0	-	0.05	1
No	75 (43.9)	21 (12.3)				
Illness (DM) onset						
Early onset	40 (23.4)	10 (5.8)	0.36	-	0.55	1
Usual onset	103 (60.2)	18 (10.5)				
Duration of illness (DM) (Yrs) N(Mean \pm SD)	143(7.9±6.5)	28(8.7±6.4)	-	-0.06	0.54	169
HbA1c N(Mean \pm SD)	50(9.1±2.8)	11(9.0±2.6)		0.09	0.93	59
$Age(yrs)N(Mean \pm SD)$	143(59.7±11.2)	28(57.9±13.7)	-	0.73	0.47	169
Age (yrs) at diagnosis (DM) N(Mean ± SD)	143(51.8±12.1)	28(49.3±13.2)	-	0.99	0.32	169

Early onset = those diagnosed DM < 45 years of age. Usual onset = those diagnosed DM \ge 45 years of age.

DISCUSSION

The mean age of the participants and the duration of illness (diabetes mellitus) obtained from this study are quite similar to what has been reported by another Nigerian study [28]. The age at diagnosis of diabetes mellitus obtained from this study also falls within normal age range (45-64 years) of occurrence of diabetes as reported in literature [29]. A plethora of health and lifestyle factors that affect the progression of diabetes has made many people suffer diabetes without knowing it; and has led to a wide range of discrepancy between age of onset of diabetes and the age at diagnosis of diabetes mellitus.

The rate of occurrence of depression among the participants of this study was 16.4%, which is similar to what has been reported in Jos, Nigeria using Halmiton Depression rating Scale [7]. But depending on the sample size, study instrument and the diagnostic criteria used, varied prevalence of depression among type 2 diabetic patients ranging from 11.6% to 92% has been reported [8]. Depression appears to increase the risk of developing diabetic mellitus by 23% in younger adults [30]. A stronger association exists between patients with depression in their forties who are on oral hypoglycaemic agent, compared to same group of patients in their seventies [31]. However, in contrast to this report, we found in this study together with Saydah et al., [32], that there is no difference in the incidence of diabetes mellitus among those who have high depressive symptoms compared to persons with no depressive symptoms. In the same vein, even though that it has been reported that the prevalence of depression is higher among females with diabetes, this research did not find any association between development of depression among the participants and gender.

In contrast to the finding of this study, a metaanalysis demonstrated a clinically significant relationship between depression and several diabetic complications like retinopathy, nephropathy, neuropathy, sexual dysfunction and macrovascular complications [33]. By common knowledge, we know that presence of comorbidity and complications of diabetes, the burden of illness increases and would worsen the symptoms of depression. With increased severity of depression, tendency of having more complications of diabetes escalates as the patient would engage unhealthy behaviours such as poor drug compliance, sedentary lifestyle, obesity and drug abuse. However, depression was consistently related to increased severity of diabetic complications with a similar effect seen for both type1 and type 2 diabetic mellitus [33]. Bearing in mind that type 1 and type 2 diabetes mellitus differ in terms of their etiologies and course of disease process, the consistent impact of depression on diabetic symptoms and complications imply a common pathway responsible for the link between depression and diabetes severity. These common pathways may be genetic and personality

factors which may explain why in this study, we could not find significant association between diabetes and depression risk factors. Carnethon et al., [34], also reported in a population based study of older adults, that the association between depression and diabetes mellitus was not fully explained by existing risk factors. On the other hand, one may also infer that the diabetic risk factors explored in this study were not exhaustive, just as Ezeme et al., [35], found that the presence of somatic symptoms and poor state of health were the most worrying disturbances of diabetes associated with depression which were not included among the risk factors in this study. More so, if the study participants have not been properly educated about the consequences or implications of the occurrence of complications and comorbidities, they may not bother much about them, hence the study demonstrating no statistically significant association between them and manifestation of depression.

So, it can be inferred that the major predisposing factors to depression in diabetics may be due to intrinsic factors like the genetic and personality risk factors. A more elaborate study involving genetic and personality risks factors may be needed.

REFERENCES

- Joseph N, Unnikrishnan B, Raghavendra Babu YP, Kotian MS, Nelliyanil M. Proportion of depression and its determinants among type 2 diabetes mellitus patients in various tertiary care hospitals in Mangalore city of South India. Indian J Endocrinol Metab. 2013; 17: 681-8.
- Diabetes. World Health Organisation; 2016.
 Available from: http://www.who.int/mediacentre/factsheets/fs312/en/
- 3. WHO. Global status report on noncommunicable diseases 2014. World Health. 2014;176.
- World Health Organization. Global Report on Diabetes [Internet]. 2016. Available from: http://apps.who.int/iris/bitstream/10665/2048 71/1/9789241565257_eng.pdf.
- Marcus M, Yasamy MT, van Ommeren M, Chisholm D, Saxena S. Depression: A global public health concern. Geneva, Switzerland: WHO Department of Mental Health and Substance Abuse; 2012. Available from: http://www.who.int/mental_health/management/de pression/who_paper_depression_wfmh_2012.pdf.
- Bawo Onesirosan J, Joyce Ohiole O, George Eze, Olufemi Morakinyo. Depression among diabetic patients in a Nigerian Teaching Hospital. South African Journal of Psychiatry. 2010; 16 (2): 61-64.
- 7. Agbir TM, Audu MD, Adebowale TO, Goar SG. Depression among medical out-patients with diabetes: A cross-sectional study at Jos University Teaching Hospital, Jos Nigeria. Journal of Medicine in the Tropics. 2010; 12: 37-41.

- Andreoulakis E, Hyphantis T, Kandylis D, Iacovides A. Depression in diabetes mellitus: A comprehensive review. Hippokratia. 2012; 16 (3): 205-214.
- Lustman PJ, Griffith LS, Freedland KE, Clouse RE. The course of major depression in diabetes. *Gen Hosp Psychiatry*. 1997; 19:138–143.
- Katon WJ, Simon G, Russo J, Von Korff M, Lin EH, Ludman E, et al., Quality of depression care in a population-based sample of patients with diabetes and major depression. Med Care. 2004; 42:1222– 1229.
- Scherrer JF, Xian H, Lustman PJ, Franz CE, McCaffery J, Lyons MJ, Jacobson KC, Kremen WS. A test for common genetic and environmental vulnerability to depression and diabetes. *Twin Res Hum Genet*. 2011; 14:169–172.
- Samaan Z, Garasia S, Gerstein HC, Engert JC, Mohan V, Diaz R, Anand SS, Meyre D. Lack of association between type 2 diabetes and major depression: epidemiologic and genetic evidence in a multiethnic population. *Transl Psychiatry*. 2015; 5:e618.
- 13. Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socioeconomic position: a systematic review and meta-analysis. *Int J Epidemiol*. 2011; 40:804–818.
- 14. Folb N, Lund C, Fairall LR, Timmerman V, Levitt NS, Steyn K, Bachmann MO. Socioeconomic predictors and consequences of depression among primary care attendees with non-communicable diseases in the Western Cape, South Africa: cohort study within a randomised trial. *BMC Public Health*. 2015; 15:1194.
- Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, Lupien SJ, Roozendaal B, Seckl JR. Do corticosteroids damage the brain? *J Neuroendocrinol*. 2006; 18:393–411.
- Moulton CD, Costafreda SG, Horton P, Ismail K, Fu CH. Meta-analyses of structural regional cerebral effects in type 1 and type 2 diabetes. *Brain Imaging Behav.* 2015; 9:651–662.
- 17. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? *Diabetologia*. 1998; 41:1241–1248.
- 18. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL, Zhang Y, Yao P, Liu LG. Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis. *Diabetes Care*. 2013; 36:166–175.
- 19. Egede LE, Zheng D. Independent factors associated with Major Depressive Disorder in a national sample of individuals with diabetes. *Diabetes Care*. 2003; 26:104–111.
- 20. Mezuk B, Eaton W, Albrecht S, Golden SH. Depression and type 2 diabetes over life span. *Diabetes Care*. 2008;31:2383–2390.
- 21. Nouwen A, Winkley K, Twisk J, Lloyd CE, Peyrot M, Ismail K, *et al.*, Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic

- review and metaanalysis. *Diabetologia*. 2010;53:2480–2486.
- Katon W, Russo J, Lin EH, Heckbert SR, Karter AJ, Williams LH, et al., Diabetes and poor diseases control: is comorbid depression associated with poor medication adherence or lack of treatment intensification. Psychosom Med. 2009; 23:588– 594
- 23. Engum A, Mykletun A, Midthjell K, Holen A, Dahl AA. Depression and Diabetes. A large population-based study of sociodemographic, lifestyle and clinical factors associated with depression in type 1 and type 2 diabetes. *Diabetes Care*. 2005; 28:1904–1909.
- 24. Katon W, Fan MU, Unützer J, Taylor J, Pincus H, Schoenbaum M. Depression and diabetes: a potentially lethal combination. *J Gen Intern Med.* 2008; 23:1571–1578.
- Tellez-Zenteno JF, Cardiel MH. Risk factors associated with depression in patients with type 2 diabetes mellitus. Arch Med Res. 2002; 33:53–60.
- Gonzalez JS, Peyrot M, McCarl LA, Collins EM, Serpa L, Mimiaga MJ, et al., Depression and diabetes treatment non-adherence: a metaanalysis. Diabetes Care. 2008; 31:2398–2403.
- 27. Abiodun O Adewuya ¹, Bola A Ola, Olusegun O Afolabi. Validity of the patient health questionnaire (PHQ-9) as a screening tool for depression amongst Nigerian university students. Affect Discord. 2006; 96 (1-2): 89-93.
- 28. Sunday Chinyere, Uloko AE, Ogbera AO, Ofoegbu EN, Fasanmade OA, Fasanmade AA, Ogbu OO. Profile of Nigerians with diabetes mellitus-Diabcare Nigeria study group (2008): Result of multi-center study. Indian J. Endocrinol Metab. 2012; 16 (4):558-564.
- Marina Basina, Jennifer Huizen. The average age of onset for type 2 diabetes. 2023, https://www.medicalnewstoday.com/articles/31737
 5.
- 30. Lauren CB, Sumit RM, Stephen CN, Jeffrey AJ. History of depression increases risk of type 2 Diabetes mellitus in younger adult. Diabetes care. 2005; 28 (5): 1063-1067.
- Berge LI, Riise T, Tell GS, Inverse MM, Ostbye T, Lund A, Knudsen AK. Depression in persons with diabetes by age and antidiabetic treatment: a crosssectional analysis with data from the Hordaland Health Study. PLoS One. 2015; 10:e0127-161. Doi: 10. 1371.
- 32. Saydah SH, Brancati FL, Golden SH, Fradkin J, Harris MI: Depressive symptoms and the risk of type 2 diabetes in a US sample. Diabetes Metab Res Rev. 2003; 19:202-208.
- 33. dGroot M, AndersonR, Freedland KE *et al.*, Association of depression and Diabetes complications: a meta-analysis. Psychosom Med. 2001; 63: 619-630.
- 34. Carnethon MR, Biggs ML, Barzilay JI *et al.*, Longitudinal association between depressive

- symptoms and incident type 2 diabetes mellitus in older adults: the cardiovascular Health Study. Arch Intern Med. 2007; 167: 802-807.
- 35. Ezeme MS, Abonyi MC, Ohayi RA, Eneh CI, Okoli PC, Eze GU, Okpara TC, Mba UC, Egwuonwu AA,

Odinka J, Eya J. Worries About Type 2 Diabetes Mellitus and Depression in Enugu, Southeastern Nigeria. East African Scholars J Med Surg. 2025; 7(7): 158-164.

Cite This Article: Ezeme Mark Sunday, Abonyi Michael Chinweuba, Ohayi Robsam Ajogwu, Eneh Chizoma Ihuarula, Okoli Paul Chibuike, Eze Gerald Uchenna, Okpara Titus Chukwubuzo, Mba Uwakwe Cosmas, Odinka Jaclyn, Eya Jonathan, Mba Sunday Gabriel, Chime Onyinye Hope (2025). Depression and its Risk Factors Among Type 2 Diabetics in Enugu, Nigeria. *East African Scholars J Med Sci*, 8(11), 374-379.