Abbreviated Key Title: East African Scholars J Med Sci ISSN: 2617-4421 (Print) & ISSN: 2617-7188 (Online) Published By East African Scholars Publisher, Kenya

Volume-8 | Issue-6 | Jun-2025 |

Original Research Article

DOI: https://doi.org/10.36349/easms.2025.v08i06.008

Molecular Detection and Phylogenetic Analysis of Gastrointestinal Protozoa from Diarrhea Patients in Al-Diwaniyah Hospital

Haneen Kahdam Jawad Al-Saady^{1*}, Hanaa Rahman Lefta¹ ¹Biology Department, Collage of Science, University of Al-Qadisiyah

> Article History Received: 16.05.2025 Accepted: 21.06.2025 Published: 26.06.2025

Journal homepage: https://www.easpublisher.com

Abstract: Gastrointestinal protozoan infections are a leading cause of diarrheal diseases worldwide, particularly in regions with inadequate sanitation and limited access to clean water. This study aimed to molecularly detect and four major protozoan parasites phylogenetically analyze Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, and Blastocystis hominis in stool samples collected from diarrhea patients attending Al-Diwaniyah Hospital in Iraq. A total of 100 stool samples were processed, with DNA extraction performed using the Presto[™] Stool DNA Extraction Kit (Geneaid, Taiwan). PCR and nested PCR assays targeting the 18S ribosomal RNA (rRNA) gene were employed for amplification, followed by sequencing and phylogenetic analysis using MEGA X and ClustalW tools. The results revealed a genes of different intestinal parasite species was shown in figure (4-4). The present result showed the 18Sribosomal RNA gene for detection B. hominis were reported in 72 (72.0%) of patients, 12 (12.0%) of patients have G. lamblia infection, 62 (62.0%) have E. histolytica infection and the 18S ribosomal RNA gene for detection C. parvum showed in 34 (34.0%). Phylogenetic analysis demonstrated remarkable genetic conservation among local isolates and global reference strains. For G. intestinalis, the local isolates (IQD.No1-No3) exhibited 99.25-99.65% sequence identity with an Australian reference strain (AF199446.1), with only 0.35-0.75% mutations. Similarly, C. parvum isolates showed 98.85–99.65% identity with an Egyptian reference (AB513881.1), while E. histolytica isolates displayed 99.16-99.45% identity with another Egyptian strain (MK332025.1). B. hominis isolates clustered closely with a Chinese reference (AB197936.1), sharing 99.15-99.71% sequence identity. The UPGMA phylogenetic trees constructed for each species confirmed minimal genetic divergence (0.01%) between local and reference strains. The study underscores the utility of the 18S rRNA gene as a robust molecular marker for accurate detection and phylogenetic studies of gastrointestinal protozoa. The high genetic similarity between Iraqi isolates and strains from geographically distant regions highlights the role of global travel and trade in parasite dissemination. These findings have significant implications for public health, emphasizing the need for improved diagnostic protocols, enhanced surveillance, and targeted control measures to reduce the burden of protozoan infections in endemic areas.

Keywords: Giardia, Crypytosporidium, phylogenetic, Stool.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

INTRODUCTION

Diarrheal diseases caused by gastrointestinal protozoa remain a formidable global health challenge, particularly in developing regions where poor sanitation, limited access to clean water, and inadequate healthcare infrastructure create ideal conditions for transmission (Checkley *et al.*, 2015). Among the most prevalent protozoan pathogens are *Giardia intestinalis*, *Cryptosporidium parvum*, *Entamoeba* *histolytica*, and *Blastocystis hominis*, which collectively account for an estimated 1.7 billion cases of diarrhea annually (Shirley *et al.*, 2012). These parasites disproportionately affect children under five, immunocompromised individuals, and marginalized populations, contributing significantly to global morbidity and mortality (Kotloff *et al.*, 2013). The World Health Organization (WHO) classifies cryptosporidiosis and amebiasis as neglected tropical diseases, highlighting their persistent burden in low-resource settings (WHO, 2020). The clinical manifestations of protozoan infections range from self-limiting diarrhea to severe, life-threatening conditions such as dysentery, dehydration, and malnutrition (Fletcher et al., 2012). E. histolytica, for instance, is responsible for invasive amebiasis, which causes 100,000 deaths yearly, primarily in endemic regions (Ximénez et al., 2010). Similarly, C. parvum is a leading cause of persistent diarrhea in HIV/AIDS patients and is associated with childhood growth stunting (Checkley et al., 2015). G. intestinalis, while rarely fatal, contributes to chronic malabsorption syndromes and cognitive deficits in children (Ankarklev et al., 2010). The pathogenicity of *B. hominis* remains debated, but emerging evidence links specific subtypes to irritable bowel syndrome and chronic urticaria (Stensvold & Clark, 2016). Traditional diagnostic methods, including microscopy and antigen detection assays, have been the cornerstone of protozoan identification for decades (Garcia, 2016). However, these techniques suffer from several limitations: (1) low sensitivity (30-60%) in low-intensity infections (Stark et al., 2014); (2) inability to differentiate morphologically identical species (e.g., *E*. histolytica from nonpathogenic E. dispar) (Tanyuksel & Petri, 2003); and (3) inter-observer variability that compromises diagnostic accuracy (Moody, 2002). These challenges underscore the need for advanced molecular tools that offer superior precision in parasite detection and characterization. The advent of polymerase chain reaction (PCR) and DNA sequencing has revolutionized parasitology by enabling species-specific identification, strain typing, and phylogenetic analysis (Stensvold, 2013). The 18S ribosomal RNA (rRNA) gene has emerged as a gold-standard molecular target due to its unique combination of conserved regions (for broadrange primer binding) and hypervariable regions (for species discrimination) (Plutzer et al., 2010). Studies have demonstrated 92-100% sensitivity and 100% specificity for 18S rRNA-based PCR assays in detecting G. Intestinalis and Cryptosporidium spp. in stool samples (Verweij et al., 2004). Furthermore, this gene's evolutionary conservation allows for phylogenetic comparisons across geographically distinct isolates, providing insights into transmission patterns and zoonotic potential (Feng & Xiao, 2011). In Iraq, diarrheal diseases are endemic, with protozoan infections accounting for 20-40% of cases in hospital-based studies (Khayyat et al., 2017). The country's protracted conflicts, damaged water infrastructure, and displaced populations have exacerbated the risk of waterborne outbreaks (Doocy et al., 2013). Al-Diwaniyah Province, located in southern Iraq, exemplifies these challenges, with recurrent reports of gastroenteritis linked to contaminated municipal water supplies (Al-Hashimi et al., 2021). Despite this, data on the molecular

epidemiology of diarrheagenic protozoa in the region remain scarce, hindering evidence-based control measures. This study aimed to address critical knowledge gaps by: Determining the prevalence of G. intestinalis, C. parvum, E. histolytica, and *B*. hominis among diarrhea patients at Al-Diwaniyah Hospital using molecular methods. Characterizing the genetic diversity of local isolates through 18S rRNA gene sequencing. Comparing Iraqi strains with global references to elucidate transmission dynamics and zoonotic linkages. Assessing the implications of findings for diagnostic protocols and public health interventions.

MATERIALS AND METHODS Sample Collection

A total of 590 stool samples were collected from diarrhea patients attending Al-Diwaniyah Hospital between October and may 2025. Samples were transported to the laboratory in sterile containers and stored at -20° C until processing. Ethical approval was obtained from the hospital's institutional review board, and informed consent was secured from all participants.

Direct Examination

Prior to molecular analysis, all samples were screened microscopically using saline and iodine wet mounts to confirm the presence of protozoan cysts or trophozoites. Concentration techniques, such as formalin-ethyl acetate sedimentation, were employed for low-intensity infections (Garcia, 2016).

DNA Extraction

Genomic DNA was extracted from 200 mg of stool using the Presto[™] Stool DNA Extraction Kit (Geneaid, Taiwan) following the manufacturer's protocol. The extracted DNA was quantified using a Nanodrop spectrophotometer (Thermo Scientific, UK), and purity was assessed via A260/A280 ratios.

PCR and Nested PCR

PCR for E. Histolytica and B. Hominis:

Primers targeting the 18S rRNA gene (Table 1) were used with GoTaq® Green Master Mix (Promega, USA). Thermocycling conditions included initial denaturation (95°C, 5 min), 35 cycles of denaturation (95°C, 30 sec), annealing (58°C, 30 sec), extension (72°C, 1 min), and final extension (72°C, 5 min).

Nested PCR for G. Intestinalis and C. Parvum:

First-round PCR products were reamplified using inner primers (Table 1) under similar conditions, with annealing temperatures adjusted to 59°C and 58°C, respectively.

	Table 1. I fillers used for TCK a	nu nesteu i CK	
Target	Primer Sequence (5'–3')	Product Size	GenBank Reference
E. histolytica F	GTGAGTTAGGATGCCACGACA	578 bp	AB426549.1
E. histolytica R	ACATCCCCTCAGCATTGTCC		
B. hominis F	ACCCCCCTTCCAGTATCCAGT	587 bp	OQ594924.1
B. hominis R	CATGCACCACCACCATAGA		
C. parvum Inner F	ATTGGAGGGCAAGTCTGGTG	727 bp	AF093494.1
C. parvum Inner R	TCCACCAACTAAGAACGGCC		
G. intestinalis F	CTCTCCCCAAGGACGAAGC	736 bp	AF199445.1

Table 1. Primers used for PCR and nested PCR

Gel Electrophoresis and Sequencing

PCR products were visualized on 1.5% agarose gels stained with ethidium bromide. Positive amplicons were sequenced by Macrogen Inc. (Korea). Sequences were analyzed using NCBI BLAST, ClustalW for alignment, and MEGA X for phylogenetic tree construction (UPGMA method).

Results

The frequency distribution of patients according to the results of PCR for detection 18SrRNA genes of different intestinal parasite species was shown in figure (4-4). The present result showed the 18Sribosomal RNA gene for detection B. hominis were reported in 72 (72.0%) of patients, 12 (12.0%) of patients have G. lamblia infection, 62 (62.0%) have E. histolytica infection and the 18S ribosomal RNA gene for detection *C. parvum* showed in 34 (34.0%).

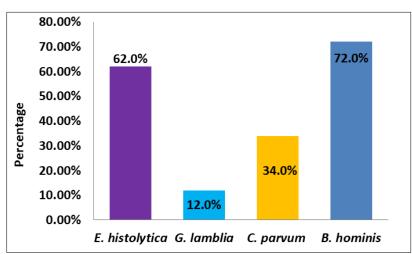


Figure 4-4: Pie chart showing the frequency distribution of intestinal parasite species according to the results of PCR

3.10.1 The Association between PCR Finding and Age Group

The comparison of age group distribution according to results of PCR for intestinal parasite is

shown in table 4-11. The present results show high rate of parasitic infection in all types in age between less than 1 years to 5 years age group.

T	able 4-11: As	sociation bety	veen PCR fir	iding and age g	001						
P value	B. hominis	C. parvum	G. lamblia	E. histolytica	الفئة العمرية						
0.001	50 (69.4%)	18 (52.9%)	6 (50.0%)	38 (61.4%)	>1-5 سنوات						
0.520	12 (16.7%)	10 (29.4%)	4 (33.3%)	12 (19.3%)	11-6 سنة						
0.269	10 (13.9%)	6 (17.7%)	2 (16.7%)	12 (19.3%)	17-12 سنة						
	72	34	12	62	العدد الكلي						
	0.001**	0.193	0.097	0.004**	P value						

• .•

Chi-square test; **: significant at P < 0.05;

3.10.2 The Association between PCR Finding and Gender

comparison of gender distribution The according to results of PCR for intestinal parasite is

shown in table 4-12. The present results show high rate of parasitic infection in all types in male patients.

1	able 4-12: As	sociation bet	ween PCK III	iding and genu	er			
P value	B. hominis	C. parvum	G. lamblia	E. histolytica	الجنس			
0.002**	46 (63.9%)	24 (70.6%)	8 (66.7%)	42 (67.7%)	ذکور			
0.021**	26 (36.1%)	10 (29.4%)	4 (33.3%)	20 (32.3%)	اناث			
	72	34	12	62	العدد الكلي			
	0.096	0.090	0.414	0.048**	P value			
C_1 + + + + + + + + + C_1 + + D_2 = 0.05								

 Table 4-12: Association between PCR finding and gender

Chi-square test; **: significant at P < 0.05;

3.10.3 The Association between PCR Finding and Residency

The comparison of urban and rural distribution according to results of PCR for intestinal parasite is

shown in table 4-13. The present results show high rate of parasitic infection in all types of parasite from urban area.

18	able 4-12: Ass	sociation betw	veen PCR fin	ding and reside	
P value	B. hominis	C. parvum	G. lamblia	E. histolytica	منطقة السكن
0.008**	26 (36.1%)	6 (17.6%)	4 (33.3%)	14 (22.6%)	ريف
0.001**	46 (63.9%)	28 (82.4%)	8 (66.7%)	48 (77.4%)	مدينة
	72	34	12	62	العدد الكلي
	0.096	0.008**	0.414	0.008**	P value

Chi-square test; **: significant at P < 0.05;

3.10.3 The Association between PCR Finding and Type of Month

The comparison of months distribution according to results of PCR for intestinal parasite is

shown in table 4-14. The present results show high rate of parasitic infection in all types of parasite in October month.

	Table 4-14: Association betwee	een PCR finding and type of month
--	--------------------------------	-----------------------------------

P value	B. hominis	C. parvum	G. lamblia	E. histolytica	الاشهر
0.044**	24 (33.3%)	8 (23.5%)	6 (50.0%)	20 (32.3%)	تشرين الاول
0.260	20 (27.8%)	8 (23.5%)	0	18 (29.0%)	تشرين الثاني
0.905	8 (11.1%)	6 (17.6%)	0	6 (9.7%)	كانون الاول
0.369	8 (11.1%)	0	2 (16.67%)	8 (12.9%)	كانون الثاني
0.753	6 (8.3%)	6 (17.6%)	2 (16.67%)	6 (9.7%)	شباط
0.748	6 (8.3%)	6 (17.6%)	2 (16.67%)	4 (6.5%)	اذار
	72	34	12	62	العدد الكلي
	0.023**	0.986	0.572	0.044**	P value

Chi-square test; **: significant at P < 0.05;

The DNA sequencing method was carried out to molecular confirmative detection, genetic relationship and genetic variation (Mutations) analysis based on 18S ribosomal RNA gene in local Entamoeba histolytica, Blastocystis hominis, Giardia intestinalis, and Cryptosporidium parvum from Human isolates that aligned with NCBI-Genbank related reference isolates.

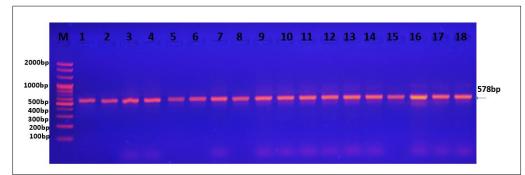


Figure 1: Agarose gel electrophoresis image that showed the PCR product analysis of small subunit ribosomal gene in Entamoeba histolytica from Human stool samples. Where M: marker (2000-100bp). Lanes (1-18) show some positive Entamoeba histolytica samples at (578bp) PCR product

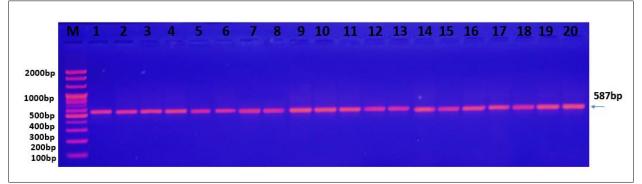


Figure 2: Agarose gel electrophoresis image that showed the PCR product analysis of small subunit ribosomal gene in Blastocystis hominis from Human stool samples. Where M: marker (2000-100bp). Lanes (1-20) show some positive Blastocystis hominis samples at (587bp) PCR product

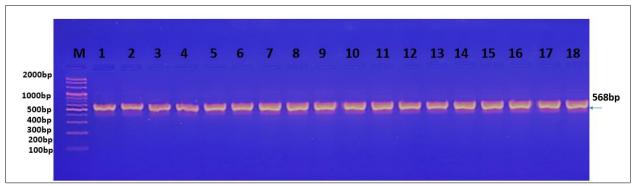


Figure 3: Agarose gel electrophoresis image that showed the Nested PCR product analysis of small subunit ribosomal gene in Cryptosporidium parvum from Human stool samples. Where M: marker (2000-100bp). Lanes (1-18) show some positive Cryptosporidium parvum samples at (568bp) Nested PCR product

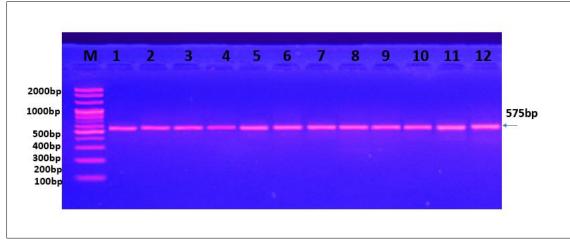


Figure 4: Agarose gel electrophoresis image that showed the Nested PCR product analysis of small subunit ribosomal gene in Giardia intestinalis from Human stool samples. Where M: marker (2000-100bp). Lanes (1-12) show only positive Giardia intestinalis samples at (575bp) Nested PCR product

Giardia Intestinalis

The phylogenetic analysis of *Giardia intestinalis* isolates (IQD.No1-No3) based on the 18S rRNA gene revealed a close genetic relationship with an Australian reference strain (AF199446.1), with only 0.01% total genetic divergence. NCBI-BLAST homology showed high sequence identity (99.25– 99.65%) and low mutation rates (0.35–0.75%), confirming strong genetic conservation. The UPGMA tree clustered the local isolates with the Australian reference, suggesting a possible common ancestral origin or widespread genetic stability in this gene region.

NA Sequences Translated Protein Sequences																												
Species/Abbrv	∆ *	* *	*	* *	*	* *	*	*	* :	* *	*	*	* *	*	*	*	* 1	*		*	* 1	* *	*	*	* *	*	*	* *
1. Giardia intestinalis IQD.No.1	G	GC	G	CC	G	AA	۱C	Т	T	G C	C C	С	A A	Т	G	С	G	G	С	G	C	C C	G	A	G G	С	A	GC
2. Giardia intestinalis IQD.No.2	G	G C	G	СС	G	ΑA	٩C	Т	Т	G C	c c	С	A A	Т	G	С	G	G	С	G	С	C C	G	A	G G	С	A	<mark>G</mark> C
3. Giardia intestinalis IQD.No.3	G	G C	G	С	G	ΑA	۱C	т	Т	G C	c c	С	A A	т	G	С	G	G	С	G	С	C C	G	A	G G	С	A	<mark>G</mark> C
4. LC732506.1:63-386 Giardia intestinalis Kenya	G	G C	G	СС	G	ΑA	٩С	т	Т	G C	c c	С	A A	Т	G	С	G	G	С	G	С	C C	G	A	G G	С	A	<mark>G</mark> C
5. DQ157272.1:104-653 Giardia intestinalis China	G	GC	G	СС	G	A A	٩С	т	т	G C	c c	С	A A	т	G	С	G	G	С	G	С	C C	G	A	G G	С	A	<mark>G</mark> C
6. OM513959.1:1-380 Giardia intestinalis Pakistan	G	GC	G	СС	G	A A	٩С	т	т	G C	c c	С	A A	т	G	С	G	G	Т	G	С	C C	G	A	G G	С	A	<mark>G</mark> C
7. FN252252.1:1-325 Giardia intestinalis UK	G	GC	G	СС	G	A A	٩с	т	Т	G C	c c	С	A A	т	G	С	G	G	С	G	c	C C	G	A	G G	С	A	g C
8. AF199446.1:104-653 Giardia intestinalis Australia	G	GC	G	СС	G	A A	١C	т	т	G C	c c	С	A A	т	G	С	G	G	С	G	С	C	G	A	G G	С	A	g C
			_									_				_					_						_	_
Species/Abbrv 🛆 🖈	* *	* *	*	*	* *	*	* *	*	* 1	* *	*	* *	*	* 1	*	*	* *	*	*	* *	*	*	* *	*	* *	*	* *	: *
1. Giardia intestinalis IQD.No.1	GG	G G	A	G C	GC	G	C <mark>G</mark>	A	G	G	A	G G	С	G C	G	С	СС	A	С	A G	С	CO	С	С	<mark>G</mark> C	C	G	G
2. Giardia intestinalis IQD.No.2	GG	G G	A (G C	GC	G	C <mark>G</mark>	A	GC	G	A	G G	С	G (G	С	СС	A	С	A G	С	С	С	С	<mark>G</mark> C	С	G C	G
3. Giardia intestinalis IQD.No.3	GG	G G	A	G C	GC	G	C <mark>G</mark>	A	GC	C G	A	G G	С	G (G	С	СС	A	С	A G	С	С	С	С	<mark>G</mark> C	С	GC	<mark>)</mark> G
4. LC732506.1:63-386 Giardia intestinalis Kenya	GG	G G	A	ЗT	GC	G	C <mark>G</mark>	A	GC	G	A	G G	С	G (G	С	СС	A	С	A G	С	С	с	С	<mark>G</mark> C	С	GC	G
5. DQ157272.1:104-653 Giardia intestinalis China	GG	G G	A	G C	GC	G	с <mark>с</mark>	А	G	G	A	G G	С	G G	G	С	сс	A	С	A G	С	С	с	С	GC	С	GC	G
6. OM513959.1:1-380 Giardia intestinalis Pakistan	GG	G G	A	G C	GC	G	C <mark>G</mark>	A	G	G	A	G G	С	3 (G	С	СС	A	С	A G	С	С	с	С	G C	С	G	G
7. FN252252.1:1-325 Giardia intestinalis UK	GG	G G	A	G C	GC	G	C G	A	G	G	A	G G	С	G G	G	С	СС	A	С	A G	С	С	с	С	GC	С	GC	G
8. AF199446.1:104-653 Giardia intestinalis Australia	GG	G G	A	G C	GC	G	сg	А	G	G	A	G G	С	G (G	С	СС	A	c,	A G	С	С	с	С	GC	С	GC	G

Figure 1: Multiple sequence alignment analysis of 18S ribosomal RNA gene in local Giardia intestinalis IQD isolates and Global NCBI-Genbank related Giardia intestinalis isolates. The multiple alignment analysis was constructed using (ClustalW alignment tool Online). That alignment analysis was showed the nucleotide alignment similarity as (*) and substitution mutations in 18S ribosomal RNA gene between isolates

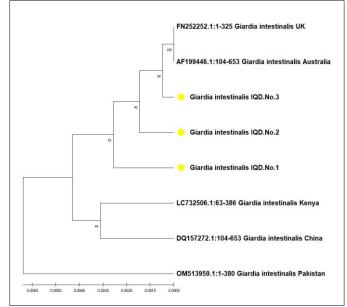


Figure 2: Phylogenetic tree analysis based 18S ribosomal RNA gene partial sequence in local Giardia intestinalis IQD isolates that used for genetic relationship analysis. The phylogenetic tree was constructed using the UPGMA method in (MEGA 6.0 version). The Giardia intestinalis IQD.No1-No3 isolates isolate showed closed related to NCBI-BLAST Giardia intestinalis Australia (AF199446.1) at total genetic changes (0.01%)

isolates and NCBI-BLAST closed genetic related Giardia intestinalis isolate:
isolates and NCDI-DEAST closed genetic related Giardia intestinans isolate.

Giardia intestinalis is	plate Homology sequence identity	(%)			
	Identical Giardia intestinalis	Country	Accession	Mutation (%)	Identity (%)
			number		
IQD.No.1	Giardia intestinalis	Australia	AF199446.1	0.75%	99.25%
IQD.No.2	Giardia intestinalis	Australia	AF199446.1	0.71%	99.29%
IQD.No.3	Giardia intestinalis	Australia	AF199446.1	0.35%	99.65%

Cryptosporidium Parvum

The *Cryptosporidium parvum* isolates (IQD.No1-No3) exhibited the closest match to an

Egyptian reference strain (AB513881.1), with 0.01% genetic divergence in the phylogenetic tree. Sequence identity was high (98.85–99.65%), with mutations

ranging from 0.35% to 1.15%. The UPGMA analysis confirmed a tight clustering with the Egyptian isolate, indicating minimal genetic variation and supporting the

reliability of the 18S rRNA gene for strain identification and evolutionary studies.

DNA Sequences Translated Protein Sequences																														
Species/Abbrv	1	* *	* *	* *	* *	*	*	*	*	*	* *	* *	*	*	*	*	* 1	* *	*	*	*	*	*	*	*	* :	* *	* *	*	*
1. Cryptosporidium parvum IQD.No.1		T /	4 0	G	G	i T	A	Т	А	Τ	T /	۱A	A	G	Т	Т	G	Г٦	G	С	A	G	Т	Т	A,	A /	A A	٩A	G	С
2. Cryptosporidium parvum IQD.No.2		T /	۹ 6	G	C G	Τ	A	Т	А	Τ	T /	۱A	A	G	Т	Т	G	٦T	G	С	A	G	Т	Т	A,	A A	A A	٩A	G	С
3. Cryptosporidium parvum IQD.No.3		ТΖ	۹ (G	C G	ιт	A	Т	А	Τ	T /	٩A	A	G	Т	т	G	Г٦	G	С	A	G	Т	Т	A,	A A	A A	٩A	G	С
4. AB513881.1:560-1053 Cryptosporidium parvum Egypt		T /	4 0	G	C G	ιт	A	Т	А	Τ	T /	٩A	A	G	Т	т	G	Г٦	G	С	A	G	Т	Т	A,	A /	A A	٩A	G	С
5. OR421304.1:572-1065 Cryptosporidium parvum USA		ТΑ	۹ (G	C G	i T	A	Т	А	Τ	T /	٩A	A	G	Т	Т	G	٦T	G	С	A	G	Т	Т	A,	A A	4 <i>F</i>	٩A	G	С
6. EU660038.1:573-1063 Cryptosporidium parvum India		ТΑ	۹ (G	C G	ιт	A	Т	А	Τ	T /	٩A	A	G	Т	т	G	Г٦	G	С	A	G	Т	Т	A,	A A	A A	٩A	G	С
7. DQ898158.1:539-1036 Cryptosporidium parvum China		T /	4 0	G	C G	ιт	A	Т	А	Τ	T /	٩A	A	G	Т	т	G	Г٦	G	С	A	G	Т	Т	A,	A /	A A	٩A	G	С
8. AF108863.1:572-1069 Cryptosporidium Australia		Г	۹ (G	C <mark>G</mark>	T	A	Т	А	Τ	T /	۱A	A	G	Т	Т	G T	۲ T	G	С	A	G	Т	Т	A,	A /	47	٩A	G	С
Species/Abbrv	*	*	*	*	* 1	R 5	* *	*	*	*	*	* 1	* *	*	*	*	*	* 1	1	*	*	*	*	*	*	*	* 1	* *	*	*
1. Cryptosporidium parvum IQD.No.1	С	G	Т	A	G	Γī	T G	G	A	Т	T I	Т	СТ	G	Т	Т	A	Ą	Γ	A	Т	Т	Т	А	Т	A	Т /	ΑA	A	A
2. Cryptosporidium parvum IQD.No.2	С	G	т	A	G	T٦	ΓG	G	A	Т	Τ	Т	СТ	G	Т	Т	A,	Ą	F A	A A	Т	Т	Т	A	Т	A	Γ	٩A	A	A
3. Cryptosporidium parvum IQD.No.3	С	G	т	A	G	T٦	ΓG	G	A	Т	Τï	Т	СТ	G	Т	Т	A,	A	Γ	A A	Т	Т	Т	А	Т	A	Γ	٩A	A	А
4. AB513881.1:560-1053 Cryptosporidium parvum Egypt	С	G	т	A	G	Γ٦	ΓG	G	A	Т	Τ	Т	СТ	G	Т	Т	A,	Ą	r A	۸ A	Т	Т	Т	A	Т	A	T /	٩A	A	A
5. OR421304.1:572-1065 Cryptosporidium parvum USA	С	G	Т	A	G	T٦	ΓG	G	A	Т	T I	Т	СТ	G	Т	Т	A,	Ą	ΓΑ	۸ A	Т	Т	Т	A	Т	A	Γ	٩A	A	А
6. EU660038.1:573-1063 Cryptosporidium parvum India	С	G	т	A	G	Γ٦	ΓG	G	A	Т	Τ	Т	СТ	G	Т	Т	A ,	Ą	r A	۸ A	Т	Т	Т	A	Т	A	T /	٩A	A	A
7. DQ898158.1:539-1036 Cryptosporidium parvum China	С	G	т	A	G	T٦	T G	G	A	Т	T I	Т	СТ	G	Т	Т	A,	Ą	r A	A A	Т	Т	Т	A	Т	A	Γ	٩A	A	A
8. AF108863.1:572-1069 Cryptosporidium Australia	С	G	T,	A	G	T 1	ΓG	G	A	Т	T I	T C	C T	G	Т	Т	A ,	Ą	F /	A A	Т	Т	Т	А	Т	A	Γ	٩A	A	A
Species/Abbrv	1	* 1	* *	1	* *	*	*	*	*	*	* 1	* *	*	*	*	*	*	* 3	. 1	*	*		*	*	*	*	* :	* *	*	*
1. Cryptosporidium parvum IQD.No.1																												CA		
2. Cryptosporidium parvum IQD.No.2	1	4 <i>F</i>	٩ A	٩ (G C	; A	G	G	С	A	T /	٦	G	С	С	Т	Т	G A	١A	Υ	A	Т	Т	С	С	A	G	CA	<mark>ر</mark> ۲	G
3. Cryptosporidium parvum IQD.No.3	1	4 <i>F</i>	۹ A	4 0	G C	; A	G	G	С	A	T /	٩T	G	С	С	Т	Т	G A	۹, A	۲	A	С	Т	С	С	A	G	C A	<mark>ر</mark> ۲	G
4. AB513881.1:560-1053 Cryptosporidium parvum Egypt	1	4 <i>F</i>	۹ A	4 0	G C	; A	G	G	С	A	T /	٦	G	С	С	T	Т	G A	٩A	١T	A	С	Т	С	С	A	G	CA	<mark>ر</mark> ۲	G
5. OR421304.1:572-1065 Cryptosporidium parvum USA	1	4 <i>F</i>	٩A	٩ (G C	; A	G	G	С	A	T /	٦	G	С	С	T	Т	G A	۱A	١T	A	С	Т	С	С	A	G	CA	<mark>ر</mark> ۲	G
6. EU660038.1:573-1063 Cryptosporidium parvum India	1	4 <i>A</i>	٩A	10	G C	; A	G	G	С	A	Т	٩T	G	С	С	Т	Т	G A	١A	۲ <mark>ا</mark>	A	С	Т	С	С	A	G	C A	ι T	G
7. DQ898158.1:539-1036 Cryptosporidium parvum China	1	A A	٩ A	10	G C	; A	G	G	С	A	T /	٩T	G	С	С	Т	Т	G A	۱,	N T	A	С	Т	С	С	A	G	C A	ι T	G
8. AF108863.1:572-1069 Cryptosporidium Australia	1	A A	٩ A	10	G C	A	G	G	С	A	T /	A T	G	С	С	Т	Т	G A	۱,	T	A	С	Т	С	С	A	G (CA	ι Τ	G

Figure 1: Multiple sequence alignment analysis of 18S ribosomal RNA gene in local Cryptosporidium parvum IQD isolates and Global NCBI-Genbank related Cryptosporidium parvum isolates. The multiple alignment analysis was constructed using (ClustalW alignment tool Online). That alignment analysis was showed the nucleotide alignment similarity as (*) and substitution mutations in 18S ribosomal RNA gene between isolates

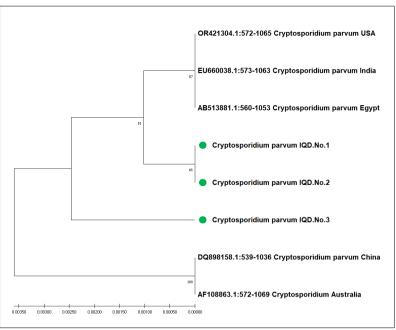


Figure 2: Phylogenetic tree analysis based 18S ribosomal RNA gene partial sequence in local Cryptosporidium parvum IQD isolates that used for genetic relationship analysis. The phylogenetic tree was constructed using the UPGMA method in (MEGA 6.0 version). The Cryptosporidium parvum IQD.No1-No3 isolates isolate showed closed related to NCBI-BLAST Cryptosporidium parvum Egypt (AB513881.1) at total genetic changes (0.01%)

Cryptosporidium p	barvum	Homology sequence identity	(%)			
isolate		Identical Cryptosporidium	Country	Accession	Mutation	Identity
		sp.	-	number	(%)	(%)
IQD.No.1		Cryptosporidium parvum	Egypt	AB513881.1	0.35%	99.65%
IQD.No.2		Cryptosporidium parvum	Egypt	AB513881.1	0.36%	99.64%
IQD.No.3		Cryptosporidium parvum	Egypt	AB513881.1	1.15%	98.85%

Table 1: The NCBI-BLAST Homology Sequence identity percentage between local Cryptosporidium parvum IQ	QD
isolates and NCBI-BLAST closed genetic related Cryptosporidium parvum isolate:	

Entamoeba Histolytica

The *Entamoeba histolytica* isolates (IQD.No1-No3) showed strong phylogenetic affinity to an Egyptian reference (MK332025.1), with negligible genetic divergence (0.01%). NCBI-BLAST results indicated high sequence identity (99.16–99.45%) and low

mutation rates (0.55–0.84%). The UPGMA tree confirmed their close relationship with the Egyptian strain, reinforcing the genetic stability of the 18S rRNA gene and its utility in distinguishing *E. histolytica* from related species.

DNA Sequences Translated Protein Sequences																												
Species/Abbrv	Δ *	*	*	* *	* *	*	*	*	*	* *	*	*	*	*	* 1	* *	*	*	*	*	*	* *	*	*	*	*	*	* 1
1. Entamoeba histolytica IQD.No.1	G	Т	G /	A T	ГΤ	T	G	Т	C/	4 0	G	Т	Т	A	Ą	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	C (G /
2. Entamoeba histolytica IQD.No.2	G	Т	G /	A T	ГΤ	Т	G	Т	С	4 0	G	Т	Т	A	Ą	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	C (G /
3. Entamoeba histolytica IQD.No.3	G	Т	G /	A T	ГΤ	Т	G	Т	С	4 0	G	Т	Т	A	Ą	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	c <mark>(</mark>	G /
4. MK332025.1:1323-1783 Entamoeba histolytica Egypt	G	Т	G /	A T	ГΤ	Т	G	Т	С	4 0	G	Т	Т	A	Ą	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	C <mark>(</mark>	G /
5. AB197936.1:1321-1781 Entamoeba histolytica China	G	Т	G /	A T	ГΤ	T	G	Т	С	4 0	G	Т	Т	A	Ą	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	C <mark>(</mark>	G /
6. OP925909.1:1322-1782 Entamoeba histolytica Singapore	G	Т	G /	A T	ГΤ	Т	G	Т	С	4 0	G	Т	Т	A	Ą	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	C <mark>(</mark>	G /
7. X56991.1:1322-1782Entamoeba histolytica USA	G	Т	G /	A T	ГΤ	Т	G	Т	С	4 0	G	Т	Т	A	Ą	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	c <mark>(</mark>	G /
8. AB426549.1:1323-1783 Entamoeba histolytica Japan	G	Т	G /	A T	ГΤ	T	G	Т	С	4 0	G	Т	Т	A	A	ГΤ	С	С	G	G	Т	٩A	C	G	А	A	C <mark>(</mark>	G /
9. GQ423749.1:1237-1696 Entamoeba histolytica Philippines	G	Т	G /	A T	ГΤ	T	G	Т	c /	4 0	G	Т	Т	A	Ą	ГТ	С	С	G	G	Т	۹ A	C	G	A	A	C <mark>(</mark>	G /
Species/Abbrv	Δ*	*	* *	* *	*	*	*	*	* 1	* *	*	*	*	1	* *	*	*	*	*	*	* 1	* *	*	*	*	*	*	*
1. Entamoeba histolytica IQD.No.1	C	Т	ΑA	٩T	T	Т	С	G (G 1	ГΤ	A	G	A	G	C 1	ГС	Т	Т	Т	Т	4 /	۱C	G	Т	G	G	G	A /
2. Entamoeba histolytica IQD.No.2	C	Т	A A	۹T	T	Т	С	G (G 1	ГΤ	A	G	A	G	0	ГС	Т	Т	Т	Т	4 /	۱C	G	Т	G	G	G	A /
3. Entamoeba histolytica IQD.No.3	C	Т	ΑA	٩T	T	Т	С	G (G 1	ГΤ	A	G	A	G	0	ГС	Т	Т	Т	Т	4 /	۱C	G	Т	G	G	G	A /
4. MK332025.1:1323-1783 Entamoeba histolytica Egypt	D	Т	A A	۹T	T	Т	С	G (G 1	ГΤ	A	G	A	G	0	ГС	Т	Т	Т	Т	4 /	۱C	G	Т	G	G	G	A i
5. AB197936.1:1321-1781 Entamoeba histolytica China	C	Т	A A	۸T	Т	Т	С	G (G 1	ГΤ	A	G	A	G	0	ГС	Т	Т	Т	Т	A /	۱C	G	Т	G	G	G	A /
6. OP925909.1:1322-1782 Entamoeba histolytica Singapore	C	Т	A A	٩T	Т	Т	С	G (G 1	ГΤ	A	G	A	С		ГС	Т	Т	Т	Т	4 /	۱C	G	Т	G	G	G	A,
7. X56991.1:1322-1782Entamoeba histolytica USA	C	Т	A A	۹T	T	Т	С	G (G 1	ГΤ	A	G	A	С	0	ГС	Т	Т	Т	Т	4 /	۱C	G	Т	G	G	G	A,
8. AB426549.1:1323-1783 Entamoeba histolytica Japan	C	Т	A A	٩T	T	Т	С	G (G 1	ГΤ	A	G	A	G	C 1	ГС	Т	Т	т	Т	4 /	۱C	G	Т	G	G	G	A,
9. GQ423749.1:1237-1696 Entamoeba histolytica Philippines	D	Т	A A	۹T	T	T	С	G (G 1	ГТ	A	G	A	С		ГС	Т	Т	Т	т	4 /	۱C	G	Т	G	G	G	A,
Species/Abbrv	Δ	*	*	* 1	* *	*	*	*	*	*	* 1	* *	*	*	*	*		* 1	k 1	* *	*	*	*	*	*	*	* 1	R 1
1. Entamoeba histolytica IQD.No.1		Α	Т	G	G A	٩G	ЪT	Т	А	С	Т	4 0	A 6	G	А	G	С	A	٦T	ГΤ	Т	А	Т	С	А	ΤT	ΤI	Γ
2. Entamoeba histolytica IQD.No.2		A	Т	G	G A	١G	ЪТ	Т	А	С	Т	4 0	A 6	G	А	G	С	A	٦	ГΤ	Т	A	Т	С	А	Тľ	Π	Γ
3. Entamoeba histolytica IQD.No.3		A	Т	G	G A	١G	ЪТ	Т	А	С	Т	4 0	A 6	G	А	G	С	A	Γī	ГΤ	Т	A	Т	С	A	т :	ΤI	Γ /
4. MK332025.1:1323-1783 Entamoeba histolytica Egypt		Α	Т	G	G A	١G	ЪΤ	Т	А	С	т	4 0	A 6	G	А	G	С	A	ר ז	гт	Т	А	т	С	А	т	T I	Γ /
5. AB197936.1:1321-1781 Entamoeba histolytica China			т																	ГТ	Т	А	Т	С	А	т :	ΤI	Г
6. OP925909.1:1322-1782 Entamoeba histolytica Singapore			т																ГΊ	ГТ	Т	A	Т	С	А	т :	ΤI	F /
7. X56991.1:1322-1782Entamoeba histolytica USA			Т																ГТ	ГТ	Т	A	Т	С	А	Т	ΤI	F/
8. AB426549.1:1323-1783 Entamoeba histolytica Japan			T (ГТ	Т	A	т	С	А	Т	ΤI	Г
	5			G																				-				

Figure 1: Multiple sequence alignment analysis of 18S ribosomal RNA gene in local Entamoeba histolytica IQD isolates and Global NCBI-Genbank related Entamoeba histolytica isolates. The multiple alignment analysis was constructed using (ClustalW alignment tool Online). That alignment analysis was showed the nucleotide alignment similarity as (*) and substitution mutations in 18S ribosomal RNA gene between isolates

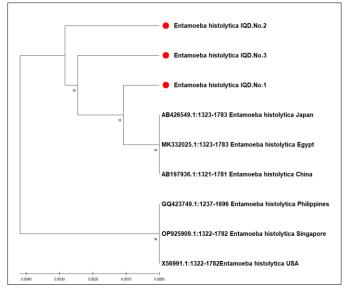


Figure 2: Phylogenetic tree analysis based 18S ribosomal RNA gene partial sequence in local Entamoeba histolytica IQD isolates that used for genetic relationship analysis. The phylogenetic tree was constructed using the UPGMA method in (MEGA 6.0 version). The Entamoeba histolytica IQD.No1-No3 isolates isolate showed closed related to NCBI-BLAST Entamoeba histolytica Egypt (MK332025.1) at total genetic changes (0.01%)

 Table 1: The NCBI-BLAST Homology Sequence identity percentage between local Entamoeba histolytica IQD isolates and NCBI-BLAST closed genetic related Entamoeba histolytica isolate:

Entamoeba	histolytica	Homology seque	nce identity (%	b)			
isolate		Identical	Entamoeba	Country	Accession	Mutation	Identity
		histolytica			number	(%)	(%)
IQD.No.1		Entamoeba histol	lytica	Egypt	MK332025.1	0.55%	99.45%
IQD.No.2		Entamoeba histol	lytica	Egypt	MK332025.1	0.84%	99.16%
IQD.No.3		Entamoeba histol	lytica	Egypt	MK332025.1	0.55%	99.45%

Blastocystis Hominis

The *Blastocystis hominis* isolates (IQD.No1-No3) were most closely related to a Chinese reference (AB197936.1), with 0.01% genetic divergence in the phylogenetic tree. Sequence identity ranged from

99.15% to 99.71%, with mutations between 0.29% and 0.85%. The UPGMA analysis grouped the local isolates with the Chinese strain, suggesting a conserved 18S rRNA gene structure but also highlighting minor genetic variations that could reflect regional subtypes.

DNA Sequences Translated Protein Sequences																												
Species/Abbrv //	2	*	*	* *	*	*	* *	* *	*	*	*	* *	*	*	*		*	*	*	* *	*	*	*	* 1	* *	*	* *	*
1. Blastocystis hominis IQD.No.1	10	G T	A	G 1	Г G	G	G 1	ΓA	Т	Т	C/	A G	G T	Т	A	C /	۱T	А	С	ΤA	T	Т	G	Т	ЗT	G	ΤТ	G
2. Blastocystis hominis IQD.No.2	۰ C	ЗT	A	G 1	۲ G	G	G 1	ΓА	Т	Т	С	A G	ЪT	Т	А	Τī	ГΤ	A	С	ΤА	Τ	Т	G	Т	ЗT	G	ΤТ	G
3. Blastocystis hominis IQD.No.3	10	ЗT	A	G 1	Г G	G	G 1	ΓA	Т	Т	С	A G	ЪT	Т	A	С	ΓТ	A	С	ΤА	Т	Т	G	Т	ЗT	G	ΤТ	G
4. AM275346.1:171-699 Blastocystis hominis Denmark	۱, A	۱T	A	G 1	Г G	G	G 1	ΓА	Т	Т	С	A G	ЪΤ	Т	А	С	ГΤ	A	С	ΤА	Т	Т	G	Т	ЗT	G	ΤТ	G
5. EF680767.1:176-681 Blastocystis hominis Spain	. 0	ЗT	A	G 1	Г G	G	G 1	ΓA	Т	Т	С	A G	ЪТ	Т	A	С	ГΤ	A	С	ΤА	Т	Т	G	Т	ЗT	G	ΤТ	G
6. KR262937.1:164-692 Blastocystis hominis China	10	ЗT	A	G 1	Г G	G	G 1	ΓА	Т	Т	С	A G	ЪT	Т	A	С	ГΤ	A	С	ΤА	Т	Т	G	Т	ЗT	G	ΤТ	G
7. AY618267.1:606-1135 Blastocystis hominis Thailand	(0	G T	A	G 1	۲ G	G	G 1	Γ A	Т	Т	C /	A G	G T	Т	A	С	ГТ	A	С	ΤA	Т	Т	G	Т	G T	G	ТΤ	G
Species/Abbrv 🛆	* :	* *	*	* *	*	*	* *	*	*	*	* *	*	*	* :	* *	*	*	* *	*	*	* *	*	*	*	* *	*	* *	*
1. Blastocystis hominis IQD.No.1	G /	A A	A	A	ГΤ	A	G A	G	Т	G	ТΤ	С	A	A /	A G	С	A	G G	C	G	ТΤ	ГΤ	G	С	ТΤ	G	A A	T
2. Blastocystis hominis IQD.No.2	G /	A A	λA	A	ГΤ	A	G A	G	Т	G	тт	С	Α.	A /	٩G	С	A	G G	C	G	ТΤ	ГΤ	G	С	ΤТ	G	A A	T
3. Blastocystis hominis IQD.No.3	G	ĄΑ	λA	A	ГΤ	A	G A	G	Т	G	ΤТ	С	Α.	A /	٩G	С	A	G G	C	G	ТΤ	ГΤ	G	С	ΤТ	G	A A	Τ
4. AM275346.1:171-699 Blastocystis hominis Denmark	G /	ĄΑ	λA	A	ГΤ	A	G A	G	Т	G	ΤТ	С	Α.	A /	٩G	С	A	G G	C	G	ТΤ	ГΤ	G	С	ΤТ	G	A A	Т
5. EF680767.1:176-681 Blastocystis hominis Spain	G /	A A	A	A	ГΤ	A	G A	G	Т	G	ТΤ	С	A	A /	٩G	С	A	G G	C	G	ΤT	ГТ	G	С	ΤТ	G	A A	T
6. KR262937.1:164-692 Blastocystis hominis China G		A A	A	A 1	ГΤ	A	G A	G	Т	G	ТΤ	С	A	A /	٩G	С	A	G G	C	G	ТΤ	ГΤ	G	С	ΤТ	G	A A	T
7. AY618267.1:606-1135 Blastocystis hominis Thailand	G	A A	A	A	ГТ	A	G A	G	Т	G	ТТ	С	A	A A	A G	С	A	G G	C	G	ТΤ	ГТ	G	С	ТТ	G	A A	Т

Species/Abbrv	Δ	* *	*	*	*	*	*	* *	*	*	*	* *	*	*	*	*		*	* 1	* 1	* *	*	*	*	*	*	*	* 1	*	*	*
1. Blastocystis hominis IQD.No.1	:	ΑA	G	G	Т	Т	A /	ΑA	۸A	G	G	ΑA	С	A	G	Т	Т	G (G (G (G G	Т	A	Т	Т	С	A	T /	۱T	Т	С
2. Blastocystis hominis IQD.No.2		A A	G	G	Т	Т	A /	A A	۸A	G	G	A A	C	A	G	Т	С	G (G (G (G G	Т	A	Т	Т	С	A	Т	۱T	Т	С
3. Blastocystis hominis IQD.No.3		A A	G	G	Т	Т	A /	ΑA	۸ A	G	G	A A	С	A	G	Т	Т	G (G (G (G G	Т	A	Т	Т	С	A	T /	۱T	Т	С
4. AM275346.1:171-699 Blastocystis hominis Denmark	:	A A	G	G	Т	Т	A /	A A	۸A	G	G	A A	С	A	G	Т	Т	G (G (G (G G	Т	A	Т	Т	С	A	T /	۱T	Т	С
5. EF680767.1:176-681 Blastocystis hominis Spain	:	A A	G	G	Т	Т	A /	A A	۸A	G	G	A A	С	A	G	Т	Т	G (G (G (G G	Т	A	Т	т	С	A	T /	۱T	Т	С
6. KR262937.1:164-692 Blastocystis hominis China	:	A A	G	G	Т	Т	A /	A A	۸A	G	G	A A	С	A	G	Т	Т	G (G (G (G G	Т	A	Т	т	С	A	T /	۱T	Т	С
7. AY618267.1:606-1135 Blastocystis hominis Thailand		A A	G	G	Т	Т	A /	A A	۸ A	G	G	A A	С	A	G	Т	Т	G (G (G (G G	Т	A	Т	Т	С	A	T /	۱T	Т	С

Figure 1: Multiple sequence alignment analysis of 18S ribosomal RNA gene in local Blastocystis hominis IQD isolates and Global NCBI-Genbank related Blastocystis hominis isolates. The multiple alignment analysis was constructed using (ClustalW alignment tool Online). That alignment analysis was showed the nucleotide alignment similarity as (*) and substitution mutations in 18S ribosomal RNA gene between isolates

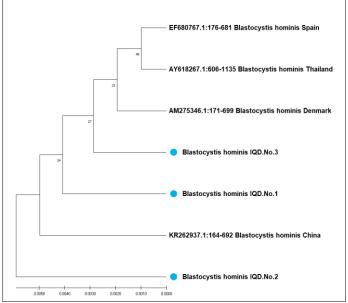


Figure 2: Phylogenetic tree analysis based 18S ribosomal RNA gene partial sequence in local Blastocystis hominis IQD isolates that used for genetic relationship analysis. The phylogenetic tree was constructed using the UPGMA method in (MEGA 6.0 version). The Blastocystis hominis IQD.No1-No3 isolates isolate showed closed related to NCBI-BLAST Blastocystis hominis China (AB197936.1) at total genetic changes (0.01%)

Table 1: The NCBI-BLAST Homology Sequence identity percentage between local Blastocystis hominis IQD
isolates and NCBI-BLAST closed genetic related Blastocystis hominis isolate:

Blastocystis hominis	Homology sequence identity	(%)			
isolate	Identical Blastocystis	Country	Accession	Mutation	Identity
	hominis		number	(%)	(%)
IQD.No.1	Blastocystis hominis	China	AB197936.1	0.35%	99.65%
IQD.No.2	Blastocystis hominis	China	AB197936.1	0.29%	99.71%
IQD.No.3	Blastocystis hominis	China	AB197936.1	0.85%	99.15%

DISCUSSION

The DNA sequencing analysis presented in this report provides valuable insights into the genetic characteristics and evolutionary relationships of several important human parasitic protozoa, including Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, and Blastocystis hominis. By employing the 18S ribosomal RNA (rRNA) gene as a molecular marker, the researchers have been able to conduct phylogenetic and comparative analyses that shed light on the genetic diversity and conservation within these parasitic species. One of the key findings is the high degree of genetic similarity observed between the local isolates and the reference strains from other geographic regions. For Giardia intestinalis, the local IQD isolates (IQD.No1-No3) exhibited a close genetic relationship with an Australian reference strain (AF199446.1), with only 0.01% total genetic divergence. The NCBI-BLAST analysis revealed high sequence identity (99.25–99.65%) and low mutation rates (0.35–0.75%), indicating a strong genetic conservation within this species (Giardia intestinalis) across different regions (Heyworth, 2016; Plutzer *et al.*, 2010). The phylogenetic tree constructed using the UPGMA method further confirmed the clustering of the local isolates with the Australian reference strain, suggesting a possible common ancestral

origin or widespread genetic stability in this gene region. Similarly, the Cryptosporidium parvum isolates (IQD.No1-No3) were found to be closely related to an Egyptian reference strain (AB513881.1), with a genetic divergence of only 0.01%. The sequence identity was high (98.85-99.65%), and the mutation rates were relatively low (0.35% to 1.15%). The phylogenetic analysis using the UPGMA method again demonstrated a tight clustering of the local isolates with the Egyptian strain, indicating minimal genetic variation within this species (Checkley et al., 2015; Xiao & Feng, 2008). These findings highlight the reliability of the 18S rRNA gene as a tool for strain identification and evolutionary studies of Cryptosporidium parvum. The Entamoeba histolytica isolates (IQD.No1-No3) also exhibited a strong phylogenetic affinity to an Egyptian reference strain (MK332025.1), with negligible genetic divergence (0.01%). The NCBI-BLAST results showed high sequence identity (99.16-99.45%) and low mutation rates (0.55–0.84%), further supporting the genetic stability of this species (Stensvold & Clark, 2016; Ximénez et al., 2010). The UPGMA tree analysis confirmed the close relationship between the local isolates and the Egyptian strain, reinforcing the utility of the 18S rRNA gene in distinguishing E. histolytica from related species. Lastly, the Blastocystis hominis isolates (IQD.No1-No3) were found to be most closely related to a Chinese reference strain (AB197936.1), with a genetic divergence of 0.01% in the phylogenetic tree. The sequence identity ranged from 99.15% to 99.71%, with mutations between 0.29% and 0.85%. The UPGMA analysis grouped the local isolates with the Chinese strain, suggesting a conserved 18S rRNA gene structure but also highlighting minor genetic variations that could reflect regional subtypes (Alfellani et al., 2013; Stensvold, 2013). The high level of genetic conservation observed across the different parasitic species underscores the reliability and utility of the 18S rRNA gene as a molecular marker for identification, strain differentiation, and phylogenetic analyses (Plutzer et al., 2010; Stensvold & Clark, 2016). The minimal genetic divergence between the local isolates and the reference strains from other geographic regions suggests a remarkable degree of genetic stability within these parasitic protozoans, which is crucial for understanding their evolutionary histories and potential for adaptation (Heyworth, 2016; Xiao & Feng, 2008). The findings from this study have several important implications for the diagnosis, epidemiology, and management of these parasitic infections. Firstly, the high sequence identity and low mutation rates observed in the 18S rRNA gene indicate that this molecular marker can be reliably used for the accurate identification and differentiation of these parasitic species, which is essential for effective clinical diagnosis and treatment (Checkley et al., 2015; Ximénez et al., 2010). The genetic conservation also suggests that diagnostic tools and molecular assays developed in one region may be applicable and transferable to other geographic settings, facilitating the standardization and harmonization of diagnostic protocols. From an

epidemiological perspective, the close genetic relationships between the local isolates and the reference strains from distant regions highlight the potential for widespread distribution and transmission of these parasitic species, possibly due to factors such as human migration, international travel, and globalization (Plutzer et al., 2010; Stensvold, 2013). This information can inform public health strategies and interventions aimed at preventing and controlling the spread of these parasitic infections, particularly in areas where environmental and sanitary conditions may favor their transmission (Heyworth, 2016; Xiao & Feng, 2008). Furthermore, the genetic stability observed in the 18S rRNA gene suggests that this molecular marker may be a reliable target for the development of diagnostic tools, such as PCR-based assays and sequencing-based methods, which can be employed for accurate species identification, strain differentiation, and epidemiological surveillance (Alfellani et al., 2013; Stensvold & Clark, 2016). Additionally, the identification of minor genetic variations, as seen in the case of Blastocystis hominis, may provide insights into the potential existence of regional subtypes or strains, which could have implications for disease manifestation, pathogenicity, and response to treatment (Stensvold, 2013). The study's findings also have implications for our understanding of the evolutionary relationships and genetic diversity within these parasitic species. The close genetic clustering of the local isolates with the reference strains from other regions suggests a high degree of genetic conservation, which may be a reflection of their evolutionary adaptations and successful strategies for maintaining their respective niches within the human host (Checkley et al., 2015; Ximénez et al., 2010). This information can contribute to our knowledge of the adaptive mechanisms and evolutionary trajectories of these parasites, which may have important implications for the development of targeted interventions and the prediction of future disease trends.

The DNA sequencing analysis presented in this report provides valuable insights into the genetic characteristics and evolutionary relationships of several important human parasitic protozoa. The high degree of genetic similarity observed between the local isolates and the reference strains from other geographic regions, coupled with the low mutation rates in the 18S rRNA gene, underscores the reliability and utility of this molecular marker for accurate species identification, strain differentiation, and phylogenetic analyses. These findings have important implications for the diagnosis, epidemiology, and management of these parasitic infections, as well as for our understanding of the evolutionary adaptations and genetic diversity within these parasitic species. The study's findings contribute to the broader body of knowledge in the field of molecular parasitology and can inform future research and clinical practice in the management of these prevalent and significant public health concerns.

REFERENCES

- Alfellani, M. A., Stensvold, C. R., Vidal-Lapiedra, A., Onuoha, E. S., Fagbenro-Beyioku, A. F., & Clark, C. G. (2013). Variable geographic distribution of Blastocystis subtypes and its potential implications. *Acta Tropica*, *126*(1), 11-18. https://doi.org/10.1016/j.actatropica.2012.12.01 1
- Al-Hashimi, O., Al-Saqur, I. M., & Al-Mayah, Q. S. (2021). Waterborne parasitic infections in central Iraq: A review of recent literature. *Journal of Global Infectious Diseases*, 13(2), 45-51. https://doi.org/10.4103/jgid.jgid_15_20
- Ankarklev, J., Jerlström-Hultqvist, J., Ringqvist, E., Troell, K., & Svärd, S. G. (2010). Behind the smile: Cell biology and disease mechanisms of Giardia species. *Nature Reviews Microbiology*, 8(6), 413-422. https://doi.org/10.1038/nrmicro2317
- Checkley, W., White, A. C., Jaganath, D., Arrowood, M. J., Chalmers, R. M., Chen, X. M., ... & Xiao, L. (2015). A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. *The Lancet Infectious Diseases*, 15(1), 85-94. https://doi.org/10.1016/S1473-3099(14)70772-8
- Fletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric protozoa in the developed world: A public health perspective. *Clinical Microbiology Reviews*, 25(3), 420-449. https://doi.org/10.1128/CMR.05038-11
- Garcia, L. S. (2016). *Diagnostic medical parasitology* (6th ed.). ASM Press.
- Heyworth, M. F. (2016). Giardia duodenalis genetic assemblages and hosts. *Parasite*, 23, 13. https://doi.org/10.1051/parasite/2016013
- Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., ... & Levine, M. M. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, casecontrol study. *The Lancet, 382*(9888), 209-222. https://doi.org/10.1016/S0140-6736(13)60844-2
- Moody, A. (2002). Diagnostic techniques for stool samples. *Clinical Microbiology Reviews*, 15(4), 613-630. https://doi.org/10.1128/CMR.15.4.613-630.2002
- Plutzer, J., Ongerth, J., & Karanis, P. (2010). Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. *International Journal of Hygiene*

and Environmental Health, 213(5), 321-333. https://doi.org/10.1016/j.ijheh.2010.06.005

- Ryan, U., & Hijjawi, N. (2015). New developments in Cryptosporidium research. *International Journal* for Parasitology, 45(6), 367-373. https://doi.org/10.1016/j.ijpara.2015.01.009
- Shirley, D. A., Moonah, S. N., & Kotloff, K. L. (2012). Burden of disease from cryptosporidiosis. *Current Opinion in Infectious Diseases*, 25(5), 555-563. https://doi.org/10.1097/QCO.0b013e328357e5 69
- Stark, D., Barratt, J., Chan, D., & Ellis, J. T. (2016). Dientamoeba fragilis, the neglected trichomonad of the human bowel. *Clinical Microbiology Reviews*, 29(3), 345-267. http://linical/control/00076/15
 - 367. https://doi.org/10.1128/CMR.00076-15
- Stensvold, C. R. (2013). Blastocystis: Genetic diversity and molecular methods for diagnosis and epidemiology. *Tropical Parasitology*, *3*(1), 26-34. https://doi.org/10.4103/2229-5070.113894
- Stensvold, C. R., & Clark, C. G. (2016). Current status of Blastocystis: A personal view. *Parasitology International*, 65(6), 763-771. https://doi.org/10.1016/j.parint.2016.11.001
- Tanyuksel, M., & Petri, W. A. (2003). Laboratory diagnosis of amebiasis. *Clinical Microbiology Reviews*, 16(4), 713-729. https://doi.org/10.1128/CMR.16.4.713-729.2003
- Verweij, J. J., Blangé, R. A., Templeton, K., Schinkel, J., Brienen, E. A., van Rooyen, M. A., ... & Polderman, A. M. (2004). Simultaneous detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in fecal samples by using multiplex real-time PCR. *Journal of Clinical Microbiology*, 42(3), 1220-1223. https://doi.org/10.1128/JCM.42.3.1220-1223.2004
- World Health Organization. (2020). *Neglected tropical diseases*. https://www.who.int/neglected_diseases/d iseases/en/
- Xiao, L., & Feng, Y. (2008). Zoonotic cryptosporidiosis. FEMS Immunology & Medical Microbiology, 52(3), 309-323. https://doi.org/10.1111/j.1574-695X.2008.00410.x
- Ximénez, C., Morán, P., Rojas, L., Valadez, A., & Gómez, A. (2010). Reassessment of the epidemiology of amebiasis: State of the art. *Infection, Genetics and Evolution, 10*(8), 1023-1032. https://doi.org/10.1016/j.meegid.2010.07.011

Cite This Article: Haneen Kahdam Jawad Al-Saady & Hanaa Rahman Lefta (2025). Molecular Detection and Phylogenetic Analysis of Gastrointestinal Protozoa from Diarrhea Patients in Al-Diwaniyah Hospital. *East African Scholars J Med Sci, 8*(6), 231-242.